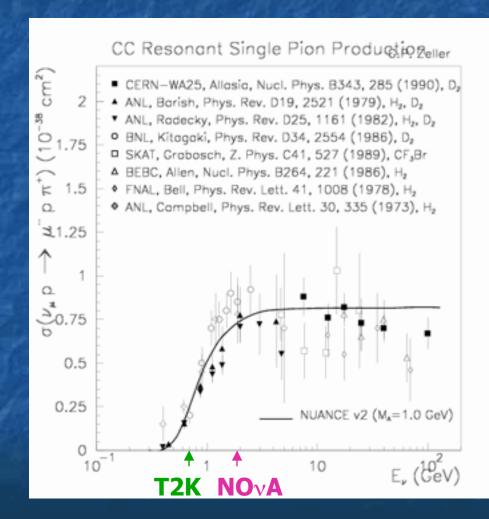
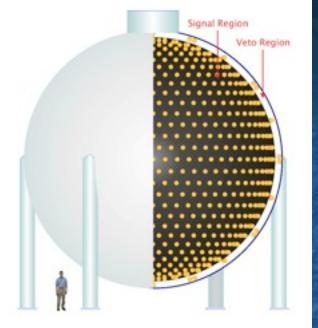

CCπ⁺ Cross Section Results from MiniBooNE

Mike Wilking
TRIUMF / University of Colorado

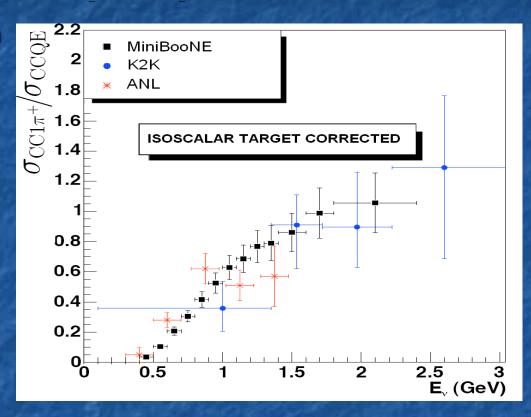
NuInt 22 May 2009


CCπ⁺ in Oscillation Experiments


- The next generation of v oscillation experiments lie at low, mostly unexplored v energies
- CCQE is the signal process for oscillation measurements
- At these energies, CCπ⁺
 is the dominant
 charged-current
 background

Previous CCπ⁺ Measurements

- The plot shows previous absolute cross section vs E_v measurements
 - (not including K2K; revisited in a few slides)
- Fewer than 8,000 events have been collected in all of these experiments combined
- Only one experiment was performed on a nuclear target (with E_v > 3 GeV)
 - Next-generation oscillation experiments use nuclear targets

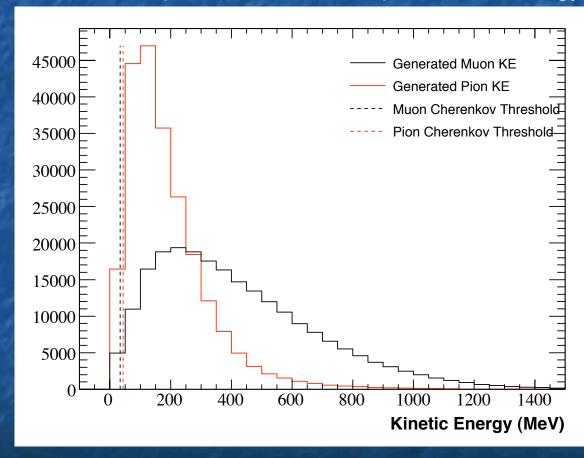


The MiniBooNE Detector

- Particle reconstruction is based primarily on detection of Cherenkov radiation (additional information is gained from delayed isotropic light)
- The tank is filled with 800 tons of ultrapure mineral oil (modeled as CH₂)
- 1280 8" phototubes are attached to the inside surface of the tank (10% coverage)
- Outside the main tank is a thin spherical shell containing 240 phototubes to veto entering particles

MiniBooNE CCπ⁺/CCQE Measurement

- The ratio of the CCπ⁺ cross section to CCQE has been measured at several neutrino energies
- Neutrino energies are determined from the reconstructed muon kinematics
- Results are in agreement with previous measurements from K2K and ANL
- Results were recently submitted to PRL

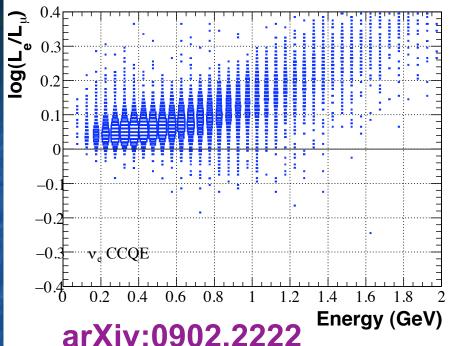

arXiv:0904.3159

See poster by J. Nowak

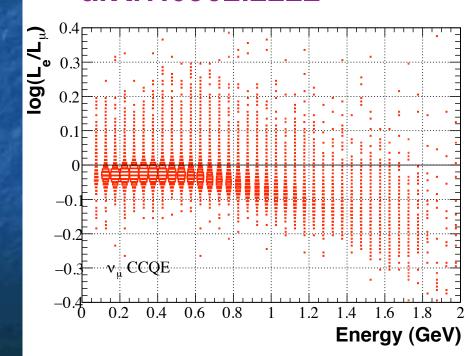
Reconstruction Improvements

- In the MiniBooNE
 detector, the muon and
 pion produced in CCπ⁺
 interactions are often both
 above Cherenkov
 threshold
- To better reconstruct each event, both the muon and pion can be included in a simultaneous fit
- In addition to reconstructing both particles, we further need the ability to distinguish the muon from the pion

Monte Carlo predicted muon and pion kinetic energy



Event Reconstruction Overview


- The reconstruction relies on a detailed analytic model of extended-track light production in the detector
- Each track is defined by 7 parameters:
 - vertex (X,Y,Z,T)
 - direction (θ, ϕ)
 - energy (E)
- For a given set of track parameters, the charge and time probability distributions are determined for each PMT
- Fitting routine varies these parameters to best fit the measured charges and times

Particle Identification

- The one track fit requires a particle hypothesis (e.g. μ or e)
- Particle identification is achieved by comparing fit likelihoods from different track hypotheses
- The ratio of the μ and e hypothesis fit likelihoods vs fit energy provides nice separation between electrons (top) and muons (bottom)

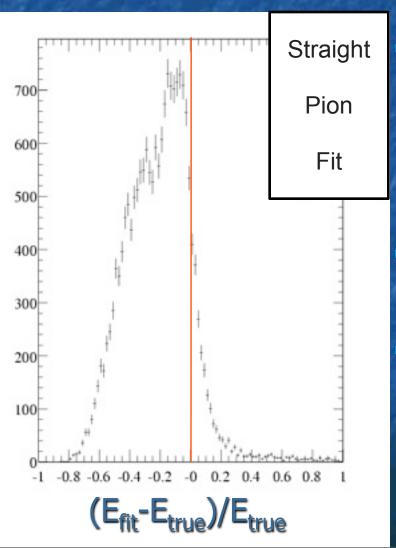
Pion Reconstruction

- In addition to reconstructing the pion kinematics, the goal of a pion fitter is to provide a means by which pions can be distinguished from muons
 - Pions and muons propagate in a very similar fashion (similar masses)
 - To separate, must exploit any differences
- Pions tend to travel in very straight paths (much like muons) except that they occasionally interact hadronically and abruptly change direction
- Since the nuclear debris emitted in these interactions usually doesn't produce any light, the pion trajectories are straight lines with a sharp "kink" in the middle
- To improve the reconstruction of these tracks, a kinked track fitter is needed

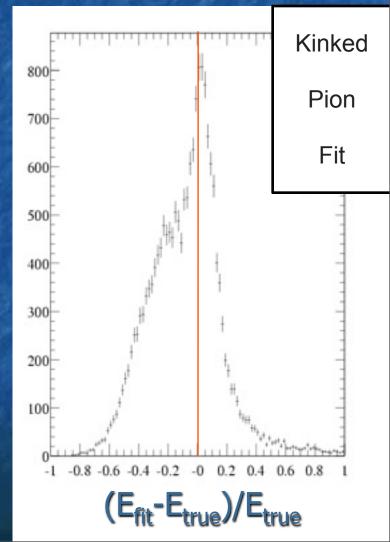
electron tracks

muon tracks

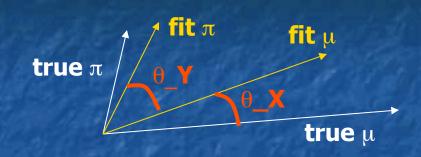
pion tracks


Creating a Kinked Fitter

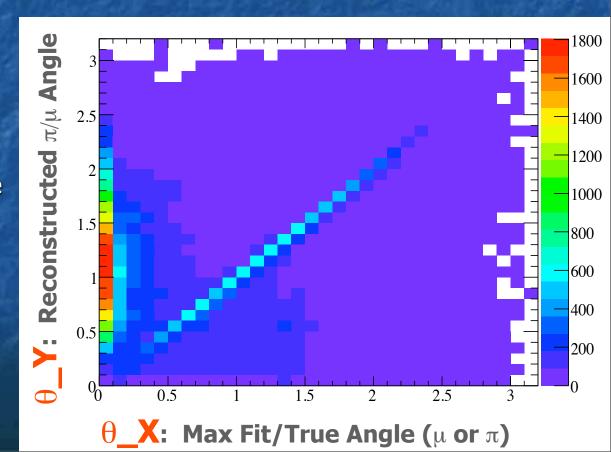
- The default track hypotheses assume that tracks start at one energy and finish with zero energy
- For a kinked track likelihood function, the predicted charges are calculated for an unkinked "base track" at the desired energy
- An "anti-track" is then created collinear with the base track and downstream of the original vertex (with proportionately less energy)
- The predicted charges for the anti-track are subtracted from the base track
- Finally, a "downstream track" is created at the vertex of the anti-track but with even less energy (due to ΔE_{kink}) and pointing in a new direction


Energy Reconstruction:

Monte Carlo simulation of single pion events


■ The peak from the kinked fit is centered on zero (straight track peak is ~10% low)

- Kinked peak is narrower
- Low E_{fit}
 "shoulder"
 from high
 energy pions
 is much
 smaller in
 kinked fit

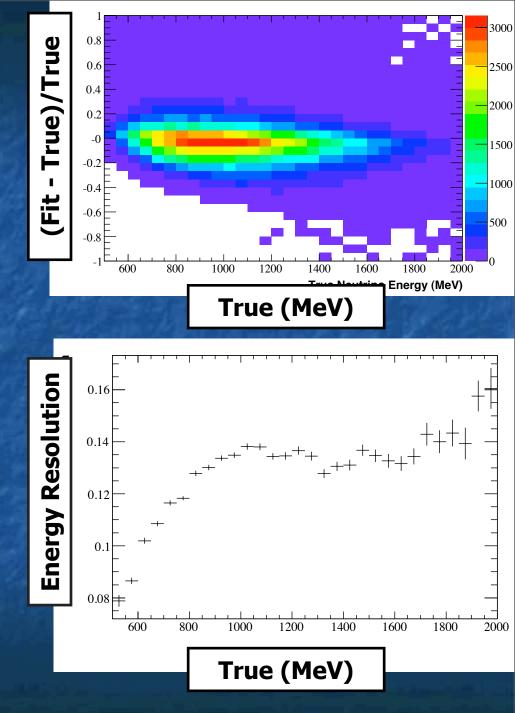


Angle Reconstruction

The plot shows the reconstructed μ/π angle versus the WORSE of the two true/reconstructed angles

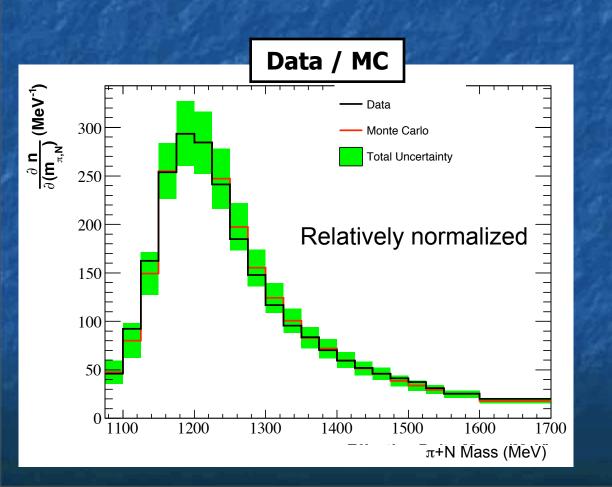
- At low reconstructed μ/π angle, the fitter is slightly less accurate
 - When one track is below Cherenkov threshold, the fitter tends to place it on top of the other track
- The bins on the diagonal are events where the μ is misidentified as the π (and vice versa)

Neutrino Energy Reconstruction

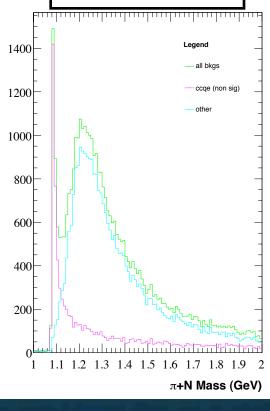

$$E_{\nu} = \frac{m_{\mu}^{2} + m_{\pi}^{2} - 2m_{N} (E_{\mu} + E_{\pi}) + 2p_{\mu} \cdot p_{\pi}}{2 (E_{\mu} + E_{\pi} - |\mathbf{p}_{\mu}| \cos \theta_{\nu,\mu} - |\mathbf{p}_{\pi}| \cos \theta_{\nu,\pi} - m_{N})}$$

- Since both the muon and pion are reconstructed, the event kinematics are fully specified assuming
 - Target nucleon is at rest
 - Neutrino direction is known
 - Recoiling nucleon mass is known
- Unlike previous analyses that have only reconstructed the muon, no assumption is needed about the mass of the recoiling Δ particle created in the interaction
- Fairly insensitive to misidentifying the muon and pion since both particles have similar mass

Neutrino Energy Resolution

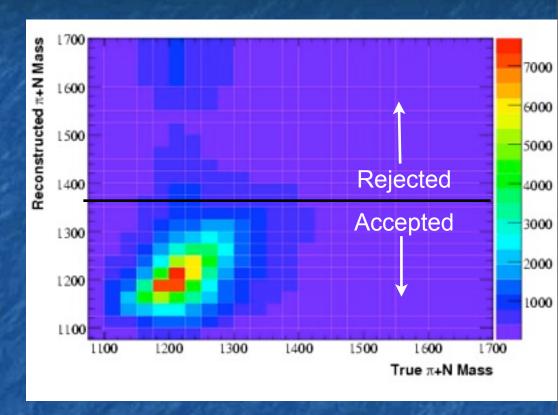

The reconstructed neutrino energy is centered on the true energy

The resolution is ~13.5% over most of the measured energy range: (0.5 - 2.0 GeV)



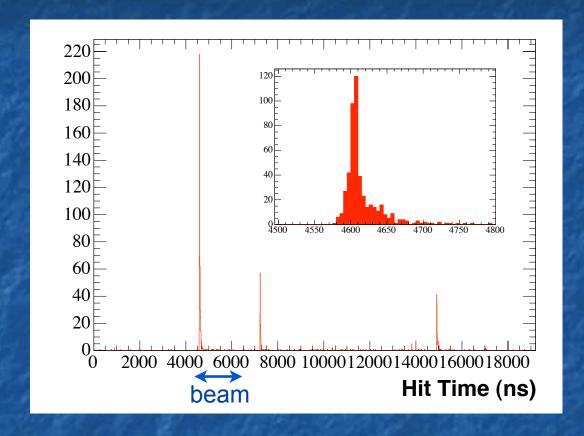
π^+ +N Mass

- Since we make no assumptions about the delta mass, we can reconstruct it
- The CCQE background piles up at low delta mass



MC Background Prediction

π++N Mass Cut


- The plot shows the reconstructed
 π⁺+N mass vs the generated value for Monte Carlo events
- At low masses, there is a correlation between these quantities, as expected

- Events in which a high energy muon is mis-reconstructed as a pion tend to accumulate at high reconstructed mass
- A cut has been placed at 1350 MeV to removed these mis-reconstructed events

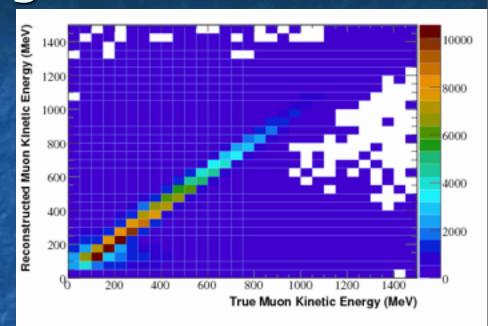
Selection Cut Summary

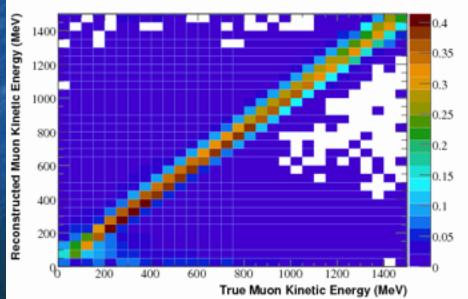
- 3 subevents
- Subevent 1:
 - thits > 175
 - vhits < 6</p>
- Subevents 2 and 3:
 - 20 < thits < 200</p>
 - vhits < 6</p>
- Fiducial volume cut

- Reconstructed π^++N mass < 1350 MeV
- These cuts result in 48,000 events with a 90% purity, and a correct muon/pion identification rate of 88%

Observed CCπ⁺ Cross Section

- Neutrino interactions are often modeled in terms of single nucleon cross sections plus additional nuclear processes that alter the composition of the final state
- Since the details of intra-nuclear processes are not accessible to experiment, we do not attempt to extrapolate our observations to the single nucleon cross section
 - greatly reduces model dependence
- Instead, we define an observed $CC\pi^+$ event to be any interaction that produces the following final state:
 - one and only one muon
 - one and only one pion
 - any number of photons and baryons from the breakup of the nucleus


Measuring the Cross Section


$$\frac{\partial \sigma}{\partial v}(v_i) = \frac{\sum_j M_{ij}(D_j - B_j)}{\epsilon_i \Delta v_i N_{targ} \Phi}$$

- Cross sections are calculated as a function of any variable(s) in the interaction
- The calculation uses the above formula (i = reconstructed bin; j = true bin)
 - v_i: any 1D or 2D distribution
 - D_i: reconstructed data distribution of v
 - B_i: background prediction of v
 - M_{ii}: unfolding matrix (see next slide)
 - ϵ_i : MC efficiency in unfolded bins
 - $\phi_{(i)}$: integrated flux (or flux histogram in the case of E_V)
 - POT: protons on target
 - $\overline{}$ $\overline{\phantom{$

Unfolding Matrix

- Top: the reconstructed vs true muon kinetic energy histogram
- Bottom: each row has been normalized to one to produce the unfolding matrix, M_{ij}
- Each row of the matrix gives the probability that an event reconstructed in bin i should be placed in true bin j

Systematic Errors

- For each error source, all parameters are varied according to a full covariance matrix
- For each new set of parameters, a new set of systematically varied events, or "multisim", is produced
- To determine the systematic errors on each cross section measurement, the cross section calculation is repeated using the multisim as though it were the central value Monte Carlo simulation
- For the absolute $CC\pi^+$ cross section measurements, the dominant systematic uncertainties are:
 - flux prediction
 - modeling of pion absorption and charge exchange interactions in the tank

Cross Section Measurements

One-Dimensional Measurements

```
    σ(E<sub>ν</sub>):
    dσ/d(Q²):
    dσ/d(KE<sub>μ</sub>):
    dσ/d(cos θ<sub>μ,ν</sub>):
    dσ/d(KE<sub>π</sub>):
```

neutrino energy

momentum transfer

muon kinetic energy

muon/neutrino angle

pion kinetic energy

pion/neutrino angle

Results in gold will be shown on the following slides

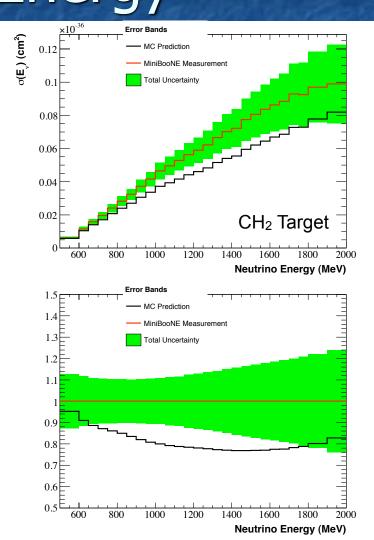
Double Differential Cross Sections

 $d^2\sigma/d(KE_u)d(\cos\theta_{u,v})$:

 $d\sigma/d(\cos\theta_{\pi\nu})$:

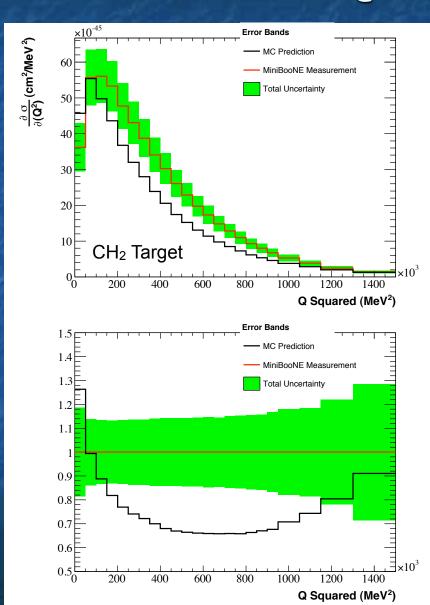
muon kinetic energy vs angle

• $d^2\sigma/d(KE_{\pi})d(\cos\theta_{\pi,\nu})$:

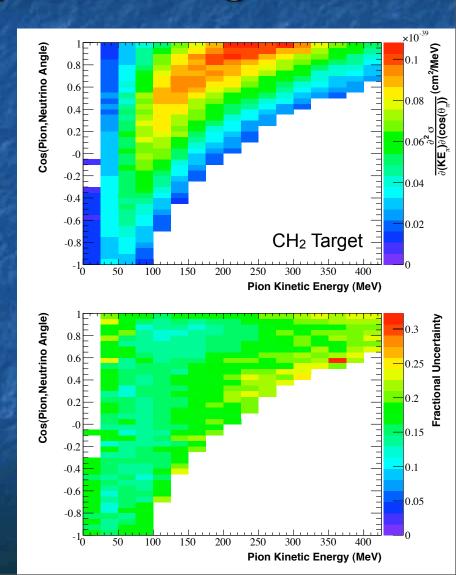

pion kinetic energy vs angle

(emphasize not FSI corrected)

Each of the Single Differential Cross Sections has also been measured in two-dimensions as a function of neutrino energy


Absolute CCπ⁺ Cross Section in Neutrino Energy

- The measured cross section is shown in red, and the total uncertainty is given by the green error band
- The lower plot gives the fractional error and the ratio of the Monte Carlo prediction to the measured cross section
- The Monte Carlo prediction is shown in black for comparison
- In addition to the diagonal errors shown, full correlated error matrices have been produced for all measurements

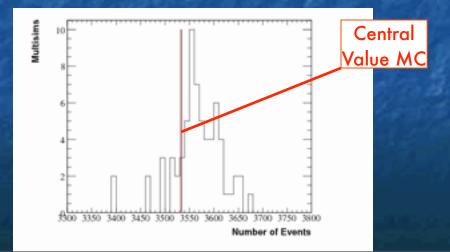

Absolute CCπ⁺ Cross Section in Q²

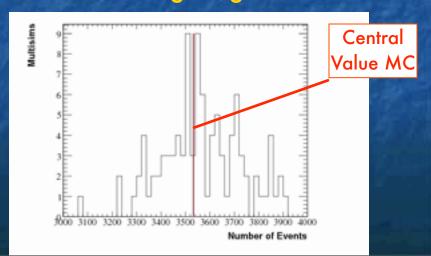
- Top: measured cross section with error bands (with Monte Carlo prediction for comparison)
- Bottom: fractional uncertainties in each bin (with MC prediction ratio)
- Just like CCQE, the data turn over faster relative to Monte Carlo at low Q²
- This measurement is flux averaged, so each bin has a minimum uncertainty of 12%

Double Differential Cross Section in Pion Energy and Angle

- Top: measured double differential cross section in pion kinetic energy and cos(θπ,ν)
- Bottom: fractional measurement uncertainty in each bin
- A full correlated error matrix has been calculated that includes each measured 2D bin

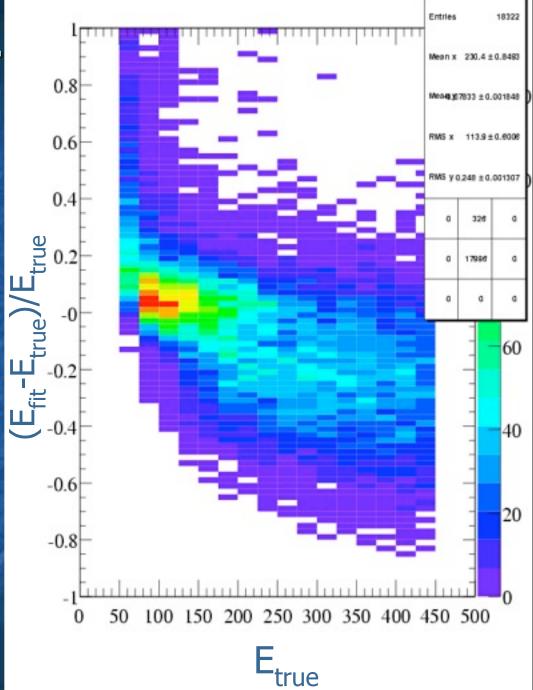
Summary


- MiniBooNE recently submitted a measurement of the CCπ⁺/CCQE cross section ratio to PRL
- By exploiting the hadronic interactions of charged pions, we can now reconstruct both the pion and the muon
- With a few simple cuts, we can achieve an event purity of 90%, while correctly identifying muon & pion tracks with an 88% success rate
- Using this new fit technique, we have produced the first ever differential and double-differential $CC\pi^+$ cross section measurements in both muon and pion final state kinematic variables
- We plan to publish these results this summer

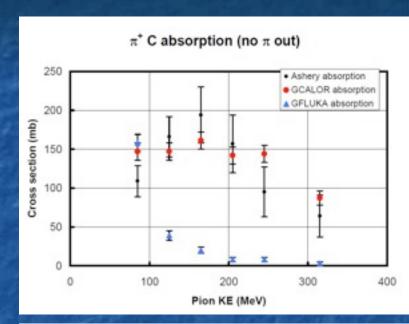

Multisim Production

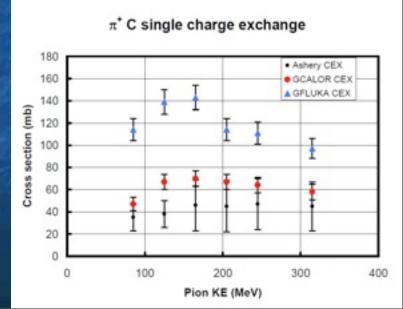
- For systematic uncertainties that only affect the probability of an event occurring (e.g. flux & cross sections), multisims can be created via reweighting
- For the optical model, 67 unisims were generated from scratch
- Below are multisim error examples for a single reconstructed neutrino energy bin (1000 $< E_v < 1050$ MeV)

67 Optical Model multisims


100 π^+ reweighting multisims

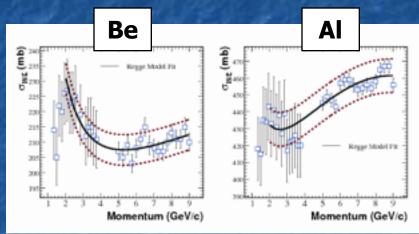
Energy Shoulder


From a Monte Carlo simulation of single pion events generated uniformly between 50 and 450 MeV

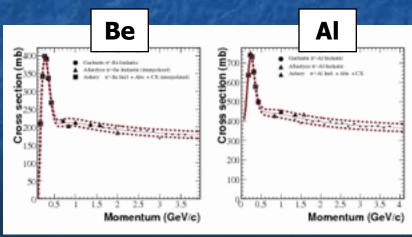

- The low fit energy shoulder in (E_{fit}-E_{true})/E_{true} comes from higher energy events
 - more energy lost in kinks
 - more kinks

Detector Simulation Uncertainties

- The optical model contains 35 parameters that control a variety of different phenomena, such as
 - scattering
 - extinction length
 - reflections
 - PMT quantum efficiency
- Each parameter is simultaneously varied within its measured error in an attempt to ascertain information about parameter correlations
- The default GFLUKA model has been replaced by GCALOR, which more accurately represents pion absorption and charge exchange data
 - The residual discrepancy is taken as a systematic uncertainty

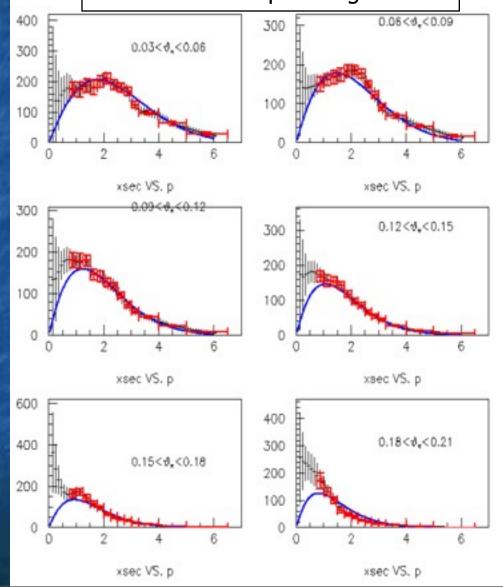

Beryllium/Aluminum Cross Sections

Nucleon and pion cross sections have several components related by:


$$\sigma_{\text{TOT}} = \sigma_{\text{ELA}} + \sigma_{\text{INE}} = \sigma_{\text{ELA}} + (\sigma_{\text{QE}} + \sigma_{\text{REA}})$$

- σ_{TOT} : total interaction cross section
- σ_{FLA} : elastic scattering cross section
- \bullet σ_{INF} : inelastic scattering cross section
- σ_{QE}: quasi-elastic scattering (target breakup; incident particle intact)
- σ_{REA}: "reaction" cross section (all non-QE inelastic scattering)
- Custom models have been built for the total, quasielastic, and inelastic cross sections
 - σ_{TOT} : Glauber model for elastic scattering (coherent nucleon sum) + optical theorem
 - σ_{QE}: incoherent nucleon sum + shadowed multiple scattering expansion
 - σ_{INE}: Regge model parametrization; fit to data

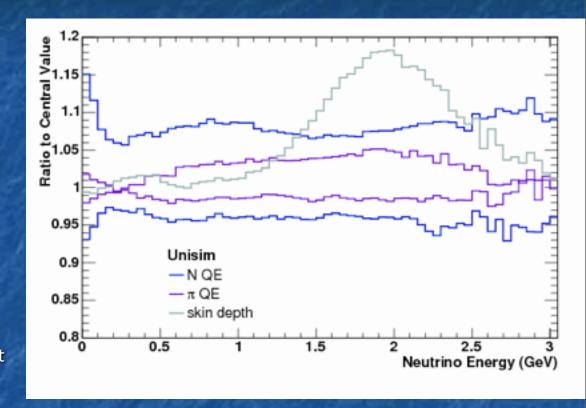
Nucleon Inelastic Cross Sections


Pion Inelastic Cross Sections

Pion Production Uncertainties

- The Sanford-Wang function fit to the HARP data produces a χ^2 /dof of 1.8
- To account for this discrepancy, the normalization uncertainty has effectively been inflated to 18%
 - The intrinsic HARP uncertainties are an uncorrelated 7%
- Rather than artificially inflate the normalization to cover an incompatibility in the shape of the parametrization, the HARP data is fit to a spline function
- The spline function passes through the data points and the uncertainties blow up in regions with no data
- The SW function is still used to generate Monte Carlo
 - the uncertainties are given by the distance between each spline variation and the SW central value
 - this inflates the error in regions where the SW and spline central values disagree

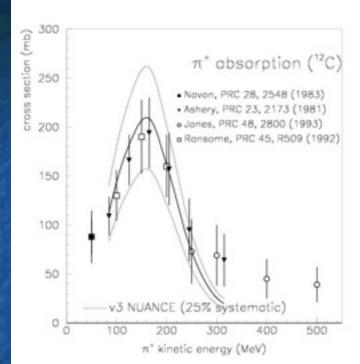
pion cross section vs momentum in bins of pion angle

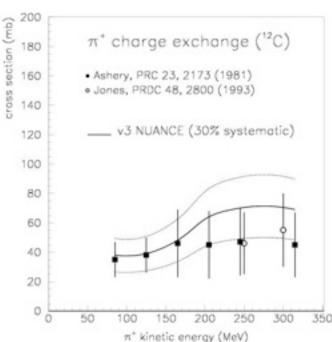


Flux Uncertainties

- Several components of the simulation have been varied to assess the effect they have on the ν_{μ} flux (called "unisims")
 - horn current
 - horn current skin depth in the inner conductor
 - all measured (or calculated) components of the p,n,π-Be,Al cross sections (while holding the other components fixed

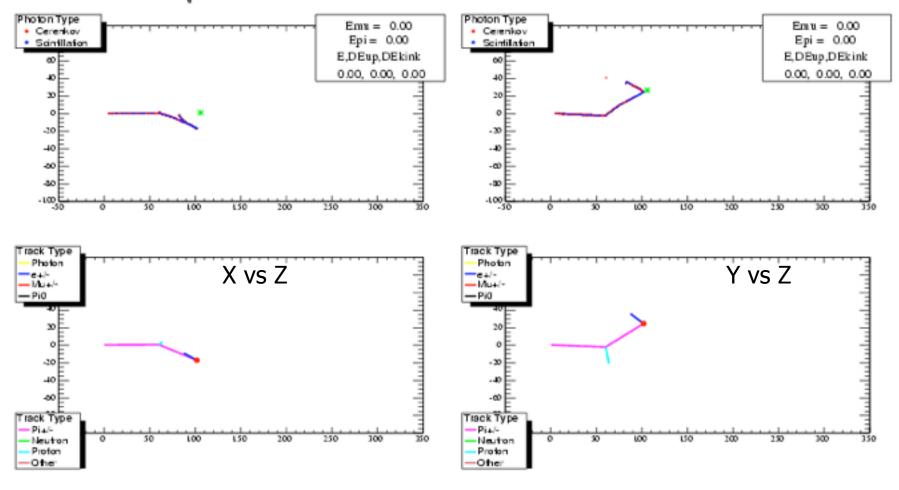
$$\sigma_{\text{TOT}} = \sigma_{\text{ELA}} + \sigma_{\text{INE}} = \sigma_{\text{ELA}} + (\sigma_{\text{QE}} + \sigma_{\text{REA}})$$


- The plot shows the variations that produce an effect larger than 2%
 - The skin depth produces a large effect at high energies
 - The quasi-elastic cross section calculations are the least constrained by data → largest error

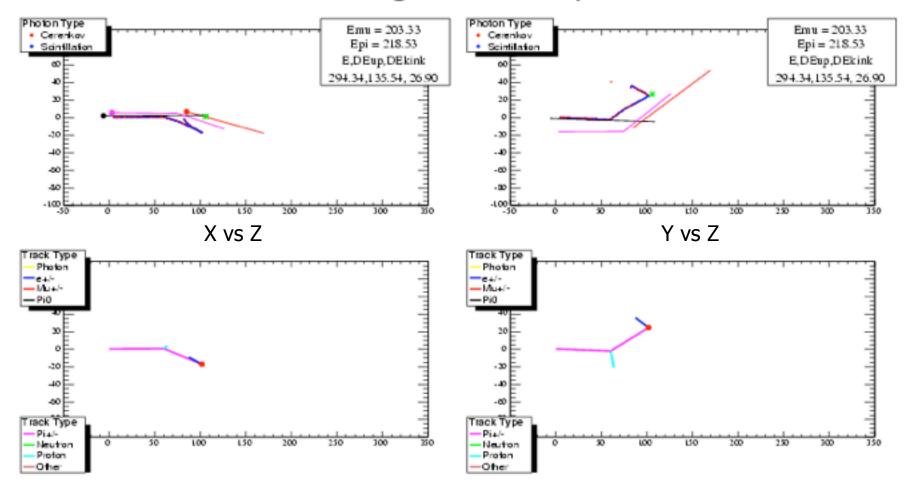


- π^+ production uncertainties are given by the spline fit covariance matrix (taken about the SW central value)
- K⁺ uncertainties are given by the Feynman Scaling fit covariance matrix

Nuance Uncertainties


- Several parameters of the cross section model are varied; the most important are as follows
- Each of the background processes are varied
 - CCQE: $M_A = 1.234 \pm 0.077 \text{ GeV } (6.2\%)$
 - CC multi π : $M_A = 1.30 \pm 0.52$ GeV (40%)
 - DIS: normalization varied by 25%
- Several important nuclear model parameters are varied as well
 - binding energy: $34 \pm 9 \text{ MeV } (26\%)$
 - Fermi momentum: 220 ± 30 MeV/c (14%)
 - pion absorption: 25%
 - pion charge exchange: 30%

How Do Pions Behave in the Oil?


- The top plots show the vertices of every emitted photon that hits a phototube for a typical 300 MeV pion
- The bottom plots show the Monte Carlo truth information

Top plot fit result legend:

Sample Fit

- Black line = pion OneTrack fit
- Red line = muon OneTrack fit
- Magenta line = pion OneTrackKinked fit

