How simple can a nuclear model be, and still be right ?

Omar Benhar INFN and Department of Physics "Sapienza" Università di Roma, I-00185 Roma

 \star What do we know ?

- ★ What do we know ?
 - ▷ Few basic facts on nuclei

- ★ What do we know ?
 - Few basic facts on nuclei
 - Statistics, dynamics and correlations

- ★ What do we know ?
 - Few basic facts on nuclei
 - Statistics, dynamics and correlations
- ★ Phenomenological models of the nucleon-nucleon interaction

- ★ What do we know ?
 - Few basic facts on nuclei
 - Statistics, dynamics and correlations
- Phenomenological models of the nucleon-nucleon interaction
- ★ Interaction effects on the nuclear cross sections

- ★ What do we know ?
 - Few basic facts on nuclei
 - Statistics, dynamics and correlations
- Phenomenological models of the nucleon-nucleon interaction
- ★ Interaction effects on the nuclear cross sections
 - ▷ initial state

- ★ What do we know ?
 - Few basic facts on nuclei
 - Statistics, dynamics and correlations
- Phenomenological models of the nucleon-nucleon interaction
- ★ Interaction effects on the nuclear cross sections
 - initial state
 - ▷ final state

- ★ What do we know ?
 - Few basic facts on nuclei
 - Statistics, dynamics and correlations
- Phenomenological models of the nucleon-nucleon interaction
- ★ Interaction effects on the nuclear cross sections
 - ▷ initial state
 - ▷ final state
- ★ Open issues

- ★ What do we know ?
 - Few basic facts on nuclei
 - Statistics, dynamics and correlations
- Phenomenological models of the nucleon-nucleon interaction
- ★ Interaction effects on the nuclear cross sections
 - ▷ initial state
 - ▷ final state
- ★ Open issues
- ★ Summary & prospects

Basic facts on atomic nuclei

 saturation of nuclear densities indicates that nucleons (just like molecules of a *van der Waals liquid*) cannot be packed too tightly

★ can the short range repulsion be explained by Pauli principle ?

- ★ can the short range repulsion be explained by Pauli principle ?
- * probability of finding two *non interacting* nucleons separated by a distance r, in isospin symmetric nuclear matter at average density $\bar{\rho}$

$$\rho(r) = \bar{\rho}^2 g_F(r)$$

- ★ can the short range repulsion be explained by Pauli principle ?
- * probability of finding two *non interacting* nucleons separated by a distance r, in isospin symmetric nuclear matter at average density $\overline{\rho}$

$$\rho(r) = \bar{\rho}^2 g_F(r)$$

★ modeling neutron matter as a non interacting Fermi gas (FG) leads to predict a maximum neutron star mass $\sim 0.8 \text{ M}_{\odot}$ (Oppenheimer & Volkoff, 1939).

★ most observed masses are close to 1.4 M_{\odot} . In this instance, the FG model is certainly too simple to be right

 NN forces induce *strong correlations* in coordinate space, which in turn give rise to *high momentum and high removal energy* components in the nuclear wave function

- NN forces induce *strong correlations* in coordinate space, which in turn give rise to *high momentum and high removal energy* components in the nuclear wave function
- ★ is nuclear dynamics needed to explain the electron scattering cross sections ?

Early applications of the FG model to e - A **scattering (A.D. 1971)**

* the main features of the inclusive electron nucleus cross section can be explained in terms of two parameters: Fermi momentum (k_F) and average nucleon removal energy (ϵ)

Early applications of the FG model to e - A **scattering (A.D. 1971)**

* the main features of the inclusive electron nucleus cross section can be explained in terms of two parameters: Fermi momentum (k_F) and average nucleon removal energy (ϵ)

The crisis (A.D. 1980)

 ★ People lived happily for about 10 years, until experimentalists managed to measure the longitudinal and transverse nuclear responses

$$\frac{d^2\sigma}{d\Omega_{e'}dE_{e'}} = \left(\frac{d\sigma}{d\Omega_{e'}}\right)_M \left[\frac{Q^4}{|\mathbf{q}|^4} R_L(|\mathbf{q}|,\omega) + \left(\frac{1}{2}\frac{Q^2}{|\mathbf{q}|^2} + \tan^2\frac{\theta}{2}\right) R_T(|\mathbf{q}|,\omega)\right]$$

The crisis (A.D. 1980)

 ★ People lived happily for about 10 years, until experimentalists managed to measure the longitudinal and transverse nuclear responses

$$\frac{d^2\sigma}{d\Omega_{e'}dE_{e'}} = \left(\frac{d\sigma}{d\Omega_{e'}}\right)_M \left[\frac{Q^4}{|\mathbf{q}|^4} R_L(|\mathbf{q}|,\omega) + \left(\frac{1}{2}\frac{Q^2}{|\mathbf{q}|^2} + \tan^2\frac{\theta}{2}\right) R_T(|\mathbf{q}|,\omega)\right]$$

The crisis (continued)

 the FG model, while providing a farly good account of the total cross section, turned out to largely overestimate the longitudinal response

The crisis (continued)

 ★ the FG model, while providing a farly good account of the total cross section, turned out to largely overestimate the longitudinal response

The crisis (continued)

 the FG model, while providing a farly good account of the total cross section, turned out to largely overestimate the longitudinal response

★ Nuclear dynamics must be included in the picture !

The paradigm of nuclear many-body theory

 ★ Bottom line: decouple the uncertainty associated with dynamical models from the approximations implied in many-body calculations

The paradigm of nuclear many-body theory

- ★ Bottom line: decouple the uncertainty associated with dynamical models from the approximations implied in many-body calculations
- Dynamics determined from the properties of two- and three-nucleon systems (exactly solvable)

$$H = \sum_{i} \frac{\mathbf{p}_i^2}{2m} + \sum_{j>i} v_{ij} + \sum_{k>j>i} V_{ijk}$$

where v_{ij} is a realistic NN potential (e.g. the ANL v_{18}) and V_{ijk} is needed to reproduce the energies of the three-nucleon systems

$$\langle V_{ijk} \rangle \ll \langle v_{ij} \rangle$$

The paradigm of nuclear many-body theory

- ★ Bottom line: decouple the uncertainty associated with dynamical models from the approximations implied in many-body calculations
- Dynamics determined from the properties of two- and three-nucleon systems (exactly solvable)

$$H = \sum_{i} \frac{\mathbf{p}_i^2}{2m} + \sum_{j>i} v_{ij} + \sum_{k>j>i} V_{ijk}$$

where v_{ij} is a realistic NN potential (e.g. the ANL v_{18}) and V_{ijk} is needed to reproduce the energies of the three-nucleon systems

 $\langle V_{ijk} \rangle \ll \langle v_{ij} \rangle$

★ Calculations of nuclear observables *do not* involve any adjustable parameters

Nucleon-nucleon scattering in free space

* The ANL v_{18} potential has been fit to the Nijmegen pp and np scattering data base, low-energy scattering parameters and deuteron observables.

Nucleon-nucleon scattering in free space

- * The ANL v_{18} potential has been fit to the Nijmegen pp and np scattering data base, low-energy scattering parameters and deuteron observables.
- \star *np* differential x-section

★ Ground and low-lying excited states of nuclei with $A \le 8$. No approximations involved in the solution of the Schrödinger equation

$$H|n\rangle = E_n|n\rangle$$

★ Note: these calculations are now doable for nuclei with $A \leq 12$.

Dynamical effects on the nuclear cross section

* Impulse approximation (reasonable at $|\mathbf{q}|^{-1} \ll r_0 = (3\bar{\rho}/4\pi)^{1/2}$)

$$J^{\mu}_A = \sum_{i=1}^A j^{\mu}_i$$

$$d\sigma_A(\mathbf{q},\omega) = \int d^3k \, dE \, d\sigma_N(\mathbf{q},\omega,\mathbf{k},E) P_h(\mathbf{k},E) \, P_p(\mathbf{k}+\mathbf{q},\omega-E)$$

- \triangleright P_h : initial state dynamics. Energy-momentum distribution of the struck particle
- P_p: final state dynamics. Energy-momentum distribution of the outgoing particle

Hole spectral function and momentum distribution of Oxygen

- FG model: $P_h(\mathbf{k}, E) \propto \theta(k_F |\mathbf{k}|) \, \delta(E \sqrt{|\mathbf{k}|^2 + m^2} + \epsilon)$
- shell model states account for $\sim 80\%$ of the strenght
- the remaining ~ 20%, arising from NN correlations, is located at high momentum *and* large removal energy (**k** ≫ k_F, E ≫ ε)

JLab E97-006 data. Carbon target

• due to the strong correlation between high momentum and high removal energy the spectral function exhibits a pronounced ridge located at

$$E \sim E_{thr} + \frac{A-2}{A-1} \frac{\mathbf{k}^2}{2m}$$

Particle spectral function

• FG model:

 $P_p(\mathbf{k}+\mathbf{q},\omega-E) \propto \theta(|\mathbf{k}+\mathbf{q}|-k_F) \,\delta(\omega-E-\sqrt{|\mathbf{k}+\mathbf{q}|^2+m^2})$

- accounts for Pauli blocking
- dynamical correlations, not included, must be consistently taken into account (gauge invariance)
- nuclear many-body theory + eikonal approximation

$$\delta(\omega - E - \sqrt{|\mathbf{k} + \mathbf{q}|^2 + m^2})$$

$$\rightarrow f(\omega - E - \sqrt{|\mathbf{k} + \mathbf{q}|^2 + m^2}))$$

What do we need ?

• NN scattering cross section *in the nuclear medium*

 $\sigma_{\rm pn}$ in nuclear matter at equilibrium density

• Distribution of the spectator particles in coordinate space. Strongly affected by NN correlations.

Nuclear transparency measured in (e, e'p)

★ recall: no FSI \rightarrow $T_A \equiv 1$

D. Rohe et al PRC 72(05)054602

Comparison to Oxygen data @ $0.2 \leq Q^2 \leq 0.6 \text{ GeV}^2$

Results for ${}^{16}O\left(\nu_{e},e\right)$ scattering

Crisis ? What crisis ?

- longitudinal and transvere response of Iron at $|\mathbf{q}| = 570 \text{ MeV}$
- calculations by A. Fabrocini and S. Fantoni, *involving no adjustable parame*ters

★ Determination of nucleon properties. Do we need a change of paradigm ?

- * Determination of nucleon properties. Do we need a change of paradigm ?
- ★ FSI for non quasi eastic processes

- ★ Determination of nucleon properties. Do we need a change of paradigm ?
- ★ FSI for non quasi eastic processes
- Two body (meson exchange) current contributions. To be taken into account in a *consistent* fashion.

- ★ Determination of nucleon properties. Do we need a change of paradigm ?
- ★ FSI for non quasi eastic processes
- Two body (meson exchange) current contributions. To be taken into account in a *consistent* fashion.
- ★ Breakdown of the impulse approximation.

- ★ Determination of nucleon properties. Do we need a change of paradigm ?
- ★ FSI for non quasi eastic processes
- Two body (meson exchange) current contributions. To be taken into account in a *consistent* fashion.
- ★ Breakdown of the impulse approximation.
 - ▷ Antisymmetrization of the final state

- ★ Determination of nucleon properties. Do we need a change of paradigm ?
- ★ FSI for non quasi eastic processes
- Two body (meson exchange) current contributions. To be taken into account in a *consistent* fashion.
- ★ Breakdown of the impulse approximation.
 - ▷ Antisymmetrization of the final state
 - Appearance of long range correlations leading to excitation of collective modes

Summary & prospects: *vox clamantis in deserto*

- Realistic nuclear models should incorporate all the available dynamical information
- ★ The emerging picture, confirmed by electron scattering data, suggests that atomic nuclei are strongly correlated systems
- ★ Oversimplified models may lead to totally wrong predictions