How simple can ^a nuclear model be, and still be right ?

Omar Benhar INFN and Department of Physics "Sapienza" Universita` di Roma, I-00185 Roma

What do we know ?

- What do we know ?
	- Few basic facts on nuclei

- What do we know ?
	- Few basic facts on nuclei
	- \triangleright Statistics, dynamics and correlations

- What do we know ?
	- Few basic facts on nuclei
	- \triangleright Statistics, dynamics and correlations
- \star Phenomenological models of the nucleon-nucleon interaction

- What do we know ?
	- Few basic facts on nuclei
	- \triangleright Statistics, dynamics and correlations
- \star Phenomenological models of the nucleon-nucleon interaction
- Interaction effects on the nuclear cross sections

- What do we know ?
	- Few basic facts on nuclei
	- \triangleright Statistics, dynamics and correlations
- \star Phenomenological models of the nucleon-nucleon interaction
- Interaction effects on the nuclear cross sections
	- initial state

- What do we know ?
	- Few basic facts on nuclei
	- \triangleright Statistics, dynamics and correlations
- \star Phenomenological models of the nucleon-nucleon interaction
- Interaction effects on the nuclear cross sections
	- initial state
	- final state

- What do we know ?
	- Few basic facts on nuclei
	- \triangleright Statistics, dynamics and correlations
- \star Phenomenological models of the nucleon-nucleon interaction
- Interaction effects on the nuclear cross sections
	- initial state
	- final state
- \star Open issues

- What do we know ?
	- Few basic facts on nuclei
	- \triangleright Statistics, dynamics and correlations
- \star Phenomenological models of the nucleon-nucleon interaction
- Interaction effects on the nuclear cross sections
	- initial state
	- final state
- \star Open issues
- \star Summary & prospects

Basic facts on atomic nuclei

saturation of nuclear densities indicates that nucleons (just like molecules of a *van der Waals liquid*) cannot be packed too tightly

can the short range repulsion be explained by Pauli principle ?

- can the short range repulsion be explained by Pauli principle ?
- probability of finding two *non interacting* nucleons separated by a distance r, in isospin symmetric nuclear matter at average density $\bar{\rho}$

$$
\rho(r)=\bar{\rho}^2 g_F(r)
$$

- can the short range repulsion be explained by Pauli principle ?
- probability of finding two *non interacting* nucleons separated by a distance r, in isospin symmetric nuclear matter at average density $\bar{\rho}$

$$
\rho(r)=\bar{\rho}^2 g_F(r)
$$

 \star modeling neutron matter as a non interacting Fermi gas (FG) leads to predict a maximum neutron star mass $\sim 0.8 \text{ M}_{\odot}$ (Oppenheimer & Volkoff, 1939).

most observed masses are close to 1.4 M_{\odot} . In this instance, the FG model is certainly too simple to be right

NN forces induce *strong correlations* in coordinate space, which in turn give rise to *high momentum and high removal energy* components in the nuclear wave function

- NN forces induce *strong correlations* in coordinate space, which in turn give rise to *high momentum and high removal energy* components in the nuclear wave function
- is nuclear dynamics needed to explain the electron scattering cross sections ?

Early applications of the FG model to $e - A$ scattering (A.D. 1971)

the main features of the inclusive electron nucleus cross section can be explained in terms of two parameters: Fermi momentum $\left(k_{F}\right)$ and average nucleon removal energy (ϵ)

Early applications of the FG model to $e - A$ scattering (A.D. 1971)

the main features of the inclusive electron nucleus cross section can be explained in terms of two parameters: Fermi momentum $\left(k_{F}\right)$ and average nucleon removal energy (ϵ)

The crisis (A.D. 1980)

 \star People lived happily for about 10 years, until experimentalists managed to measure the longitudinal and transverse nuclear responses

$$
\frac{d^2\sigma}{d\Omega_{e'}dE_{e'}} = \left(\frac{d\sigma}{d\Omega_{e'}}\right)_M \left[\frac{Q^4}{|\mathbf{q}|^4} R_L(|\mathbf{q}|,\omega) + \left(\frac{1}{2}\frac{Q^2}{|\mathbf{q}|^2} + \tan^2\frac{\theta}{2}\right) R_T(|\mathbf{q}|,\omega)\right]
$$

The crisis (A.D. 1980)

 \star People lived happily for about 10 years, until experimentalists managed to measure the longitudinal and transverse nuclear responses

$$
\frac{d^2\sigma}{d\Omega_{e'}dE_{e'}} = \left(\frac{d\sigma}{d\Omega_{e'}}\right)_M \left[\frac{Q^4}{|\mathbf{q}|^4} R_L(|\mathbf{q}|,\omega) + \left(\frac{1}{2}\frac{Q^2}{|\mathbf{q}|^2} + \tan^2\frac{\theta}{2}\right) R_T(|\mathbf{q}|,\omega)\right]
$$

The crisis (continued)

the FG model, while providing ^a farly good account of the total cross section, turned out to largely overestimate the longitudinal response

The crisis (continued)

the FG model, while providing ^a farly good account of the total cross section, turned out to largely overestimate the longitudinal response

The crisis (continued)

the FG model, while providing ^a farly good account of the total cross section, turned out to largely overestimate the longitudinal response

Nuclear dynamics must be included in the picture !

The paradigm of nuclear many-body theory

Bottom line: decouple the uncertainty associated with dynamical models from the approximations implied in many-body calculations

The paradigm of nuclear many-body theory

- Bottom line: decouple the uncertainty associated with dynamical models from the approximations implied in many-body calculations
- \star Dynamics determined from the properties of two- and three-nucleon systems (exactly solvable)

$$
H = \sum_{i} \frac{\mathbf{p}_i^2}{2m} + \sum_{j>i} v_{ij} + \sum_{k>j>i} V_{ijk}
$$

tic NN potential (e.g. the ANL v_{18}) a

 reproduce the energies of the the three-nucleon systems $\frac{1}{2m} +$
ential
e thre where v_{ij} is a realistic NN potential (e.g. the ANL v_{18}) and V_{ijk} is needed to

$$
\langle V_{ijk}\rangle\ll\langle v_{ij}\rangle
$$

The paradigm of nuclear many-body theory

- Bottom line: decouple the uncertainty associated with dynamical models from the approximations implied in many-body calculations
- \star Dynamics determined from the properties of two- and three-nucleon systems (exactly solvable)

$$
H = \sum_{i} \frac{\mathbf{p}_i^2}{2m} + \sum_{j>i} v_{ij} + \sum_{k>j>i} V_{ijk}
$$

tic NN potential (e.g. the ANL v_{18}) a

 reproduce the energies of the the three-nucleon systems $\frac{1}{2m} +$
ential
e thre where v_{ij} is a realistic NN potential (e.g. the ANL v_{18}) and V_{ijk} is needed to

 $V \vee \angle \wedge$

Calculations of nuclear observables *do not* involve any adjustable parameters

Nucleon-nucleon scattering in free space

The ANL v_{18} potential has been fit to the Nijmegen pp and np scattering data base, low-energy scattering parameters and deuteron observables.

Nucleon-nucleon scattering in free space

- The ANL v_{18} potential has been fit to the Nijmegen pp and np scattering data base, low-energy scattering parameters and deuteron observables.
- np differential x-section

Ground and low-lying excited states of nuclei with $A \leq 8$. No approximations involved in the solution of the Schrödinger equation

$$
H|n\rangle = E_n|n\rangle
$$

Note: these calculations are now doable for nuclei with $A \leq 12$.

Dynamical effects on the nuclear cross section

Impulse approximation (reasonble at $|q|^{-1} \ll r_0 = (3\bar{\rho}/4\pi)^{1/2}$ $\overline{}$

$$
J^\mu_A = \sum_{i=1}^A j^\mu_i
$$

$$
\sigma_A - \sum_{i=1}^{J_i} J_i
$$

$$
d\sigma_A(\mathbf{q}, \omega) = \int d^3k \, dE \, d\sigma_N(\mathbf{q}, \omega, \mathbf{k}, E) P_h(\mathbf{k}, E) P_p(\mathbf{k} + \mathbf{q}, \omega - E)
$$

- \triangleright h_i : initial state dynamics. Energy-momentum distribution of the struck particle
- \triangleright \mathbf{r}_p : final state dynamics. Energy-momentum distribution of the outgoing particle

Hole spectral function and momentum distribution of Oxygen

- FG model: $P_h(\mathbf{k}, E) \propto \theta(k_F)$
shell model states account for $|\mathbf{k}| \partial \delta(E - \sqrt{|\mathbf{k}|^2 + m^2 + \epsilon})$
- shell model states account for \sim
- shell model states account for $\sim 80\%$ of the strenght
the remaining $\sim 20\%$, arising from NN correlations, is located at high mo-
mentum *and* large removal energy ($\mathbf{k} \gg k_F, E \gg \epsilon$) mentum *and* large removal energy ($\mathbf{k} \gg k_F, E \gg \epsilon)$

JLab E97-006 data. Carbon target

due to the strong correlation between high momentum and high removal energy the spectral function exhibits ^a pronounced ridge located at

$$
E \sim E_{thr} + \frac{A-2}{A-1} \frac{\mathbf{k}^2}{2m}
$$

Particle spectral function

FG model:

 $\mathcal{L}_p({\bf k}+{\bf q},\omega-E)\propto \theta(|{\bf k}+{\bf q}|-k_F)\; \delta(\omega-E-\sqrt{|{\bf k}+{\bf q}|^2+m^2}).$

- accounts for Pauli blocking
- \triangleright dynamical correlations, not included, must be consistently taken into account (gauge invariance)
- nuclear many-body theory ⁺ eikonal approximation

$$
\delta(\omega - E - \sqrt{|\mathbf{k} + \mathbf{q}|^2 + m^2})
$$

$$
\rightarrow f(\omega - E - \sqrt{|\mathbf{k} + \mathbf{q}|^2 + m^2}))
$$

What do we need ?

NN scattering cross section *in the nuclear medium*

Distribution of the spectator particles in coordinate space. Strongly affected by NN correlations.

 $\sigma_{\rm nn}$ in nuclear matter at equilibrium density

Nuclear transparency measured in

recall: no FSI $\rightarrow T_A \equiv 1$

D. Rohe et al PRC 72(05)054602

Comparison to Oxygen data @ $\frac{6}{6}$ GeV²

Results for ^{16}O (ν_e,e) scattering

Crisis ? What crisis ?

- longitudinal and transvere response of Iron at $|q| = 570 \text{ MeV}$
- calculations by A. Fabrocini and S. Fantoni, *involving no adjustable parameters*

Determination of nucleon properties. Do we need ^a change of paradigm ?

- Determination of nucleon properties. Do we need ^a change of paradigm ?
- FSI for non quasi eastic processes

- Determination of nucleon properties. Do we need ^a change of paradigm ?
- FSI for non quasi eastic processes
- Two body (meson exchange) current contributions. To be taken into account in ^a *consistent* fashion.

- Determination of nucleon properties. Do we need ^a change of paradigm ?
- FSI for non quasi eastic processes
- Two body (meson exchange) current contributions. To be taken into account in ^a *consistent* fashion.
- Breakdown of the impulse approximation.

- Determination of nucleon properties. Do we need ^a change of paradigm ?
- FSI for non quasi eastic processes
- Two body (meson exchange) current contributions. To be taken into account in ^a *consistent* fashion.
- Breakdown of the impulse approximation.
	- \triangleright Antisymmetrization of the final state

- Determination of nucleon properties. Do we need ^a change of paradigm ?
- FSI for non quasi eastic processes
- Two body (meson exchange) current contributions. To be taken into account in ^a *consistent* fashion.
- Breakdown of the impulse approximation.
	- \triangleright Antisymmetrization of the final state
	- \triangleright Appearance of long range correlations leading to excitation of collective modes

Summary & prospects: *vox clamantis in deserto*

- Realistic nuclear models should incorporate all the available dynamical information
- The emerging picture, confirmed by electron scattering data, suggests that atomic nuclei are strongly correlated systems
- \star Oversimplified models may lead to totally wrong predictions