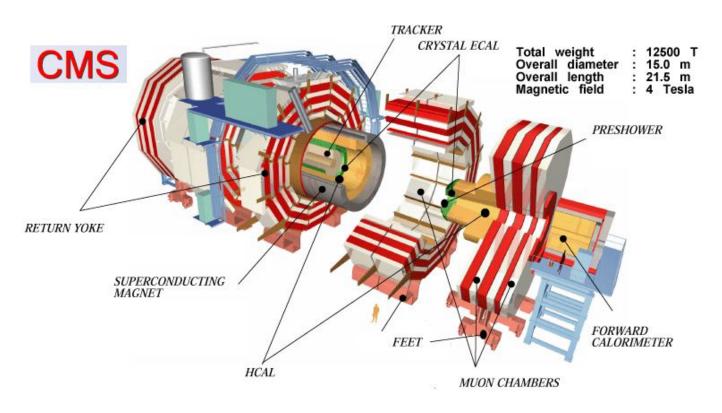
Measurement of the W $\gamma\gamma$ and Z $\gamma\gamma$ Cross Sections and Limits on Dimension-8 Effective Field Theories

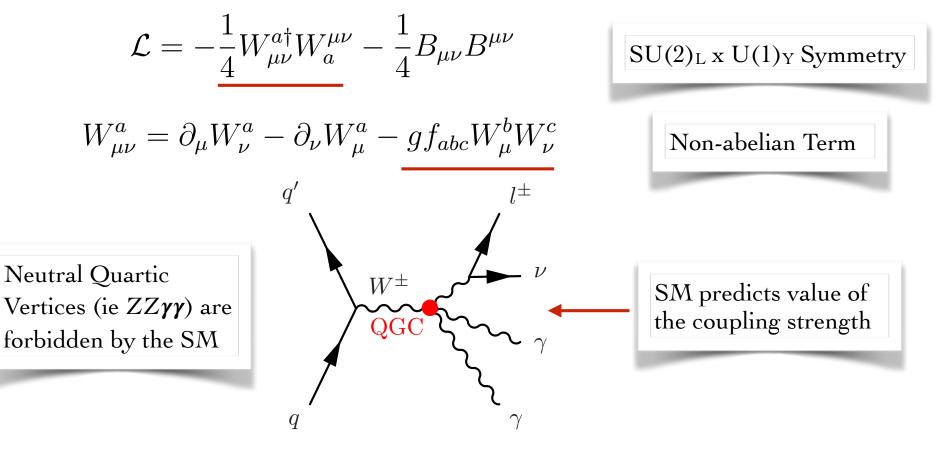
> Christopher Anelli on behalf of the CMS collaboration


Lake Louise Winter Institute 2016

Overview

- Motivation for studying $W\gamma\gamma$ and $Z\gamma\gamma$
- Description of the Analysis
 - * 2D Template Method for Estimating Jet Misidentification Background
 - ***** Definition of Fiducial Region
- Fiducial Cross-Section Measurements
- Limits on Dimension-8 Effective Field Theories

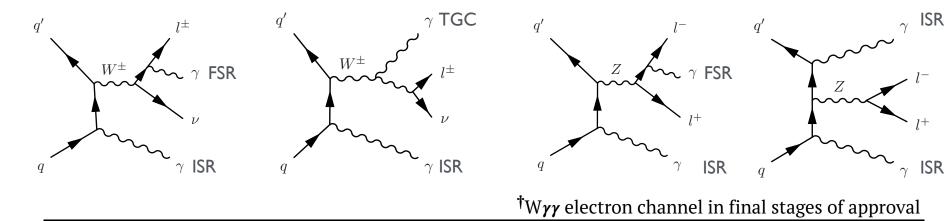
Reported in CMS-PAS-SMP-15-008: <u>https://cds.cern.ch/</u> record/2130360?ln=en


CMS Experiment

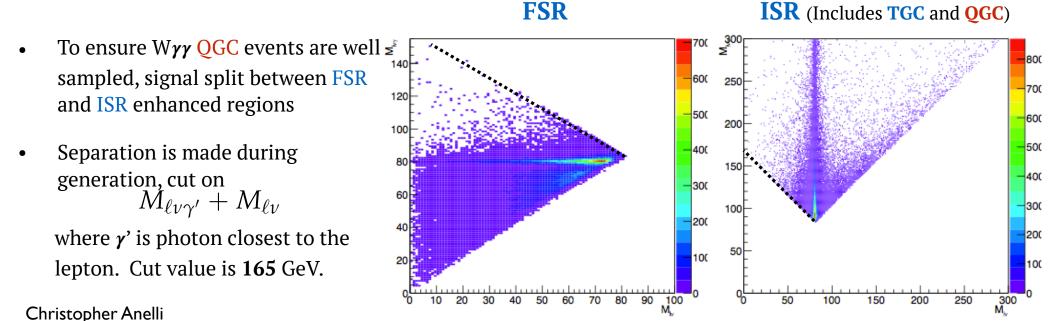
- Measurements made with **8 TeV** Proton-Proton Collisions collected by the CMS detector during the LHC Run 1, 2012.
- Collected events correspond to an integrated luminosity of **19.4 fb**⁻¹.

$W\gamma\gamma$ and $Z\gamma\gamma$

- $W\gamma\gamma$ and $Z\gamma\gamma$ are **rare** SM processes. This (and recent ATLAS results) are the first time these measurements have been made at a hadron collider.
- $W\gamma\gamma$ production is sensitive to **Quartic Gauge Couplings**.



• Deviations from the SM prediction are a clear signal of **new physics**.


Additional Feynman Diagrams

Analysis is for **leptonic decay** of W and Z : W $\rightarrow \mu\nu^{\dagger}$ and Z $\rightarrow \ell\ell$. (ℓ is e or μ)

Contributing diagrams come for Initial State Radiation (ISR), Final State Radiation (FSR), and Triple Gauge Couplings (TGC).

 $W\gamma\gamma$ and $Z\gamma\gamma$ signal samples are simulated at NLO with MadGraph + Pythia.

Object and Event Selection

Wγγ - Single Lepton Triggers

Single Muon: pT Threshold 24 GeV

Ζγγ - **Dilepton Triggers**

- Two Electrons: pT Threshold 17 and 8 GeV
- Two Muons: pT Threshold 17 and 8 GeV

Event Categorization

 Categorized by detector region in which the lead and sub-lead photons are reconstructed: barrel-barrel, barrel-endcap, endcap-barrel, and endcap-endcap

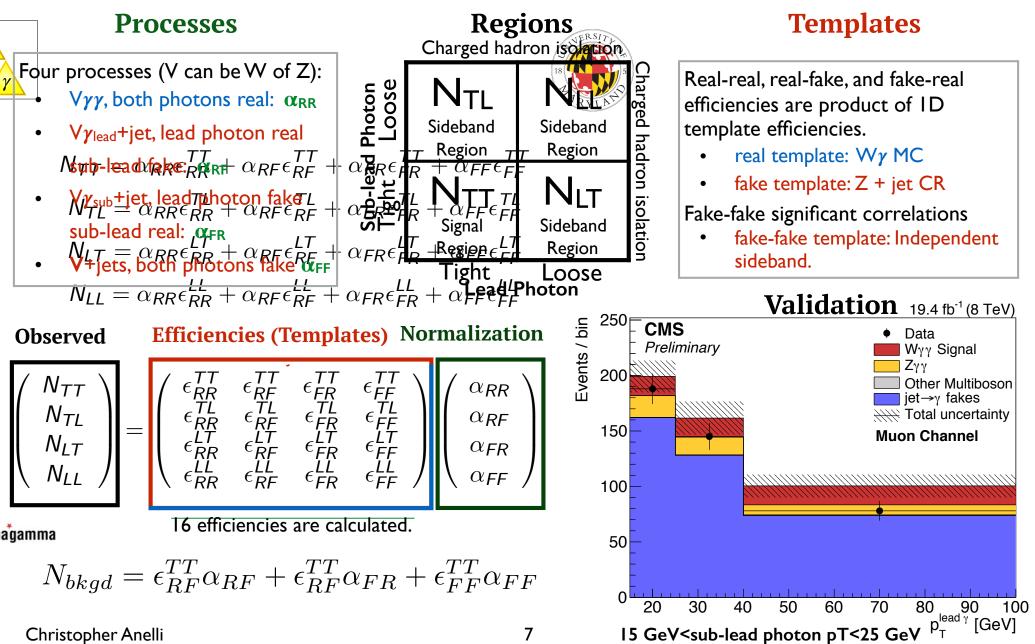
Wγγ Selection

- Photons: **pT > 25 GeV**, |η| < 2.5
- Muons: isolated, pT > 25 GeV, |η| < 2.1
- Electrons: isolated, pT > 30 GeV, $|\eta| < 2.5$
- Exactly 1 lepton and 2 photons.
- $\Delta R(\gamma, \gamma) > 0.4$, $\Delta R(\gamma, \ell) > 0.4$
- No endcap-endcap events
 - $m_T(\ell, E_T^{miss}) > 40 \text{ GeV}$ $E_T^{miss} = -\Sigma \text{ All PF Objects}$

 $m_{\rm T} = \sqrt{2E_T^{\ell}E_{\rm T}^{\rm miss}\left(1 - \cos\left(\Delta\phi\left(E_T^{\ell}, E_{\rm T}^{\rm miss}\right)\right)\right)}$

♦ No additional lepton with pT > 10 GeV

Ζγγ Selection


- Photons: <u>pT > 15 GeV</u>, |η| < 2.5
- Muons: isolated, pT > 10 GeV, |η| < 2.4
- Electrons: isolated, pT > 10 GeV, $|\eta| < 2.5$
- Exactly 2 opposite sign leptons and 2 photons.
- $\Delta R(\gamma, \gamma) > 0.4$, $\Delta R(\gamma, \ell) > 0.4$, $\Delta R(\ell, \ell) > 0.4$
- No endcap-endcap events
- ♦ M_{ℓℓ} > 40 GeV
- Lead lepton pT > 20 GeV

To reduce the $Z\gamma\gamma$ background

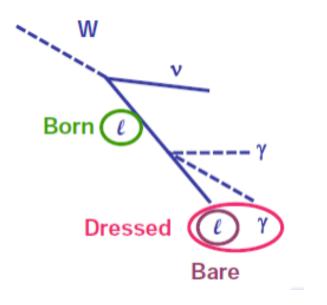
+

Misidentified Jet Background

Number of jet misidentified as photons is estimated using a data driven 2D template method. **Charged hadron isolation** is the discriminating variable on the **lead** and **sublead** photons.

Other Backgrounds

- For $W\gamma\gamma$ analysis, $Z\gamma\gamma$ is a background. Estimated using NLO MC.
- For both analyses, small contributions from diphoton processes, $WW\gamma\gamma$, $WZ\gamma\gamma$ $ZZ\gamma\gamma$, $tt\gamma\gamma$.


For each detector region, expected background sources, observed events, and simulated signal. $(W\gamma\gamma muon channel)$

Region	jet misID	$Z\gamma\gamma$ + Irreducible	Total Background	Data	Expected signal			
Muon Channel								
Barrel-Barrel	25 ± 6	9.6 ± 1.3	34 ± 6	62	16.5 ± 1.8			
Barrel-Endcap	17 ± 3 1.9 ± 0.4		19 ± 3	26	4.1 ± 0.5			
Endcap-Barrel	21 ± 4	2.5 ± 0.5	24 ± 4	20	4.1 ± 0.5			
Sum	63 ± 11	14 ± 2	77 ± 12	108	25 ± 3			

Definition of Fiducial Region

Fiducial region mirrors the off-line selection cuts as closely as possible. Small extrapolations made over pT, η , and photon location.

Definition of W ^{\pm} $\gamma\gamma$ Fiducial Region	Definition of Z $\gamma\gamma$ Fiducial Region			
$\begin{array}{l} p_{\mathrm{T}}^{\gamma} > 25 \mathrm{GeV}, \eta^{\gamma} < 2.5\\ p_{\mathrm{T}}^{\ell} > 25 \mathrm{GeV}, \eta^{\ell} < 2.4\\ \end{array}$ Exactly one candidate lepton and two candidate photons $m_{\mathrm{T}}(\ell, \nu_{\mathrm{(s)}}) > 40 \mathrm{GeV}\\ \Delta R(\gamma, \gamma) > 0.4 \mathrm{and} \Delta R(\gamma, \ell) > 0.4 \end{array}$	$\begin{array}{c} p_{\mathrm{T}}^{\gamma} > 15 \mathrm{GeV}, \eta^{\gamma} < 2.5\\ p_{\mathrm{T}}^{\ell} > 10 \mathrm{GeV}, \eta^{\ell} < 2.4\\ \hline \text{Exactly two candidate leptons and two candidate photons}\\ \text{lead } p_{\mathrm{T}}^{\gamma} > 20 \mathrm{GeV}\\ M_{\ell\ell} > 40 \mathrm{GeV}\\ \Delta R(\gamma, \gamma) > 0.4, \Delta R(\gamma, \ell) > 0.4, \mathrm{and} \Delta R(\ell, \ell) > 0.4 \end{array}$			

- **Fiducial Leptons Definition:** When PYTHIA radiates the leptons, electrons are more likely than muons to produce collinear photons.
- Lepton universality restored by dressing the generator leptons with photons within $\Delta R < 0.1$.

$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$$

Photons used in dressing are removed from the fiducial selection cuts.

Fiducial Cross Section

$$\sigma(pp \to \ell \nu \gamma \gamma)_{\text{Fiducial}} = (1 - f_{\tau}) \cdot \frac{N_{\text{obs}} - N_{\text{bkgd}}}{C_{W\gamma\gamma}} \cdot \mathcal{L}$$

$$f_{\tau} = \frac{N_{gen}[W \to \tau \nu \gamma \gamma \to \ell \nu \nu \nu \gamma \gamma (\text{fiducial})]}{N_{gen}[W \to \ell \nu \gamma \gamma (\text{fiducial})] + N_{gen}[W \to \tau \nu \gamma \gamma \to \ell \nu \nu \nu \gamma \gamma (\text{fiducial})]}$$

Tau Fraction is 2.4% for $W\gamma\gamma$ and 0.3% for $Z\gamma\gamma$

$$C_{W^{\pm}\gamma\gamma} = \frac{N_{\text{reco}} \left[W \to \ell \nu \gamma \gamma \right] + N_{\text{reco}} \left[W \to \tau \nu \gamma \gamma \to \ell \nu \nu \nu \gamma \gamma \right]}{N_{\text{gen}} \left[W \to \ell \nu \gamma \gamma (\text{fiducial}) \right] + N_{\text{gen}} \left[W \to \tau \nu \gamma \gamma \to \ell \nu \nu \nu \gamma \gamma (\text{fiducial}) \right]}$$

Fiducial Acceptance Factors

	Electron Channel	Muon Channel
$\frac{C_{W^{\pm}\gamma\gamma}}{1-f_{\tau}}$	_	$26.7\pm^{1.2}_{1.1}\%$
$\frac{C_{Z\gamma\gamma}}{1-f_{\tau}}$	$22.5\pm^{1.6}_{1.4}\%$	$29.1\pm^{1.8}_{1.4}\%$

Summary of Systematics

Tables show sources of systematic and statistical uncertainty, their errors are propagated to the fiducial cross-section measurements:

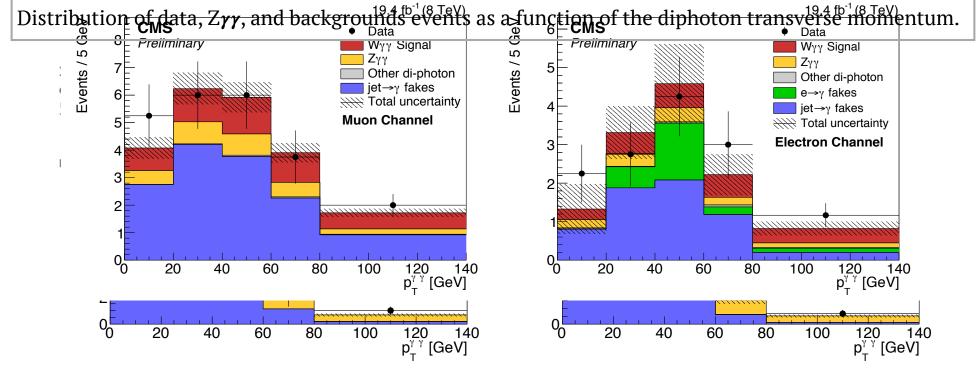
Systematic Uncertainties	$W\gamma\gamma ightarrow \mu\gamma\gamma$	$Z\gamma\gamma \to ee\gamma\gamma$	$Z\gamma\gamma \to \mu\mu\gamma\gamma$
Signal Simulation Systematics	$\delta(\sigma_{W\gamma\gamma})$	$\delta(\sigma)$	$Z_{\gamma\gamma})$
Simulation Statistics	2.40%	3.25%	2.89%
Theory	1.65%	1.69%	1.37%
Data/MC Scale Factor Corrections	2.08%	4.89%	3.18%
Data/MC Energy Scale Corrections	2.52%	2.52%	3.07%
Total Signal Simulation	4.38%	6.60%	5.46%
Background Systematics	$\delta(\sigma_{W\gamma\gamma})$	$\delta(\sigma_{Z\gamma\gamma})$	
Misidentified Jet	37.19%	15.08%	12.51%
Misidentified Electron	-	-	-
$Z\gamma\gamma$	5.44%	-	-
Other Multiboson Backgrounds	1.02%	0.21%	0.26%
Total Background	37.64%	15.08%	12.51%
Statistical Uncertainties	$\delta(\sigma_{W\gamma\gamma})$	$\delta(\sigma)$	$_{Z\gamma\gamma})$
Signal Region	29.30%	16.54%	13.64%
Sidebands	4.39%	1.39%	1.20%
Total Statistical	29.60%	16.60%	13.70%

Main uncertainties are from limited statistics and background systematics.

Cross sections for the electron and muon channel are combined using the **Best Linear Unbiased Estimator** (**BLUE**) method.

Ζγγ

Measured Cross Section (Photon pT >15 GeV)


 $\sigma_{Z\gamma\gamma}^{\text{fid}}$ · BR $(Z \rightarrow \ell \ell) = 12.7 \pm 1.4 \text{ (stat)} \pm 1.8 \text{ (syst)} \pm 0.3 \text{ (lumi) fb}$

NLO Theory Prediction

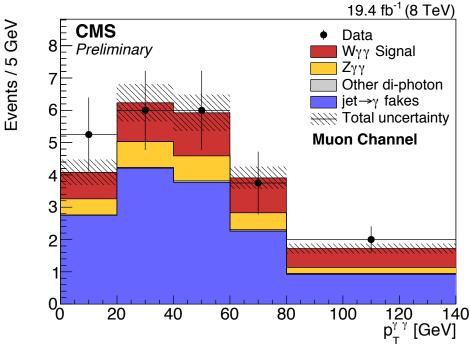
 $\sigma_{Z\gamma\gamma}^{\text{NLO}} \cdot \text{BR} \left(Z \to \ell \ell \right) = 12.95 \pm 1.47 \,\text{fb}$

Significance

5.9 σ

Christopher Anelli

Wγγ


Measured Cross Section (Photon pT >25 GeV)

 $\sigma_{W^{\pm}\gamma\gamma}^{\text{fid}} \cdot \text{BR} (W \rightarrow \mu\nu) = 6.0 \pm 1.8 \text{ (stat)} \pm 2.3 \text{ (syst)} \pm 0.2 \text{ (lumi) fb}$

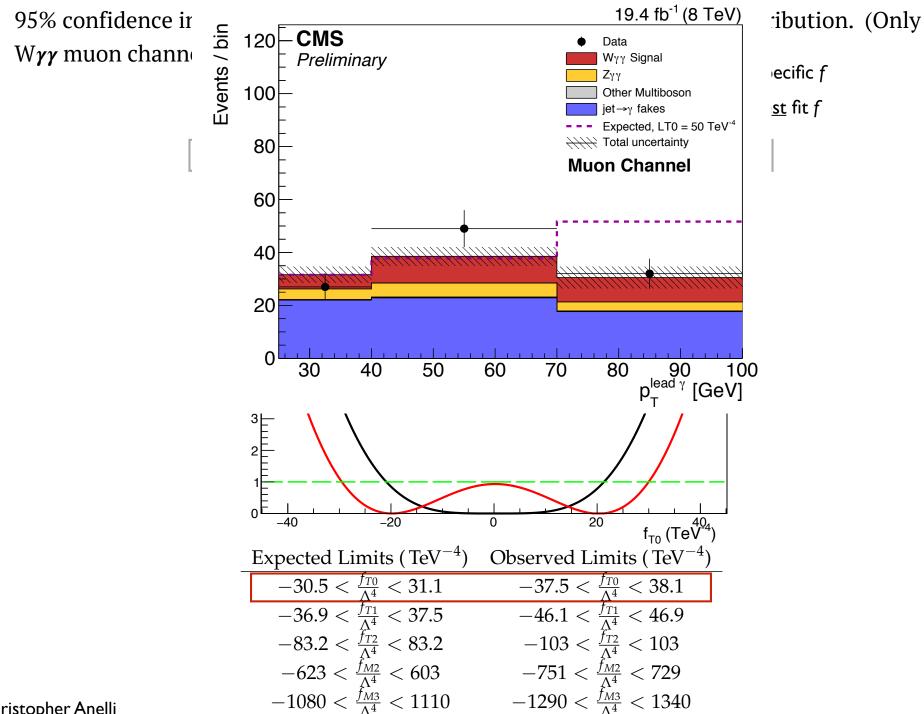
NLO Theory Prediction

 $\sigma_{W^{\pm}\gamma\gamma}^{\text{NLO}}$ · BR (W $\rightarrow \mu\nu$) = 4.76 ± 0.53 fb

Distribution of data, $W\gamma\gamma$ (µ), and backgrounds events as a function of the diphoton transverse momentum.

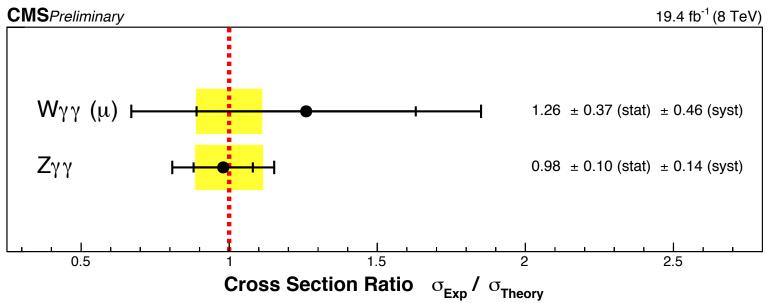
Christopher Anelli

Effective Field Theories


• Dimension-8 is the lowest order for "purely" quartic anomalous gauge couplings. There are 14 operators that contribute to the $WW\gamma\gamma$ vertex, we look at a subset.

$$\mathcal{L}_{aQGC} = \mathcal{L}_{SM} + \sum_{i} \frac{f_i}{\Lambda^4} \mathcal{O}_i + \dots$$

$$\mathcal{L}_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right] \quad \bullet \mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right] \\ \mathcal{L}_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right] \quad \bullet \mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right] \\ \bullet \mathcal{L}_{M,2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right] \quad \bullet \mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right] \\ \bullet \mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right] \quad \gamma \text{ is a linear combination of the B and W^{3}}$$


- Effective Field Theories simulated with MadGraph using a reweighing method.
- Extrapolate between simulated coupling strengths with a parabolic fit.
- Modified signal region for the limit setting, lead photon pT > 70 GeV. Events are binned by channel and photons' detector region.
- Most the limit setting sensitivity comes from **barrel-barrel** events.

Limits

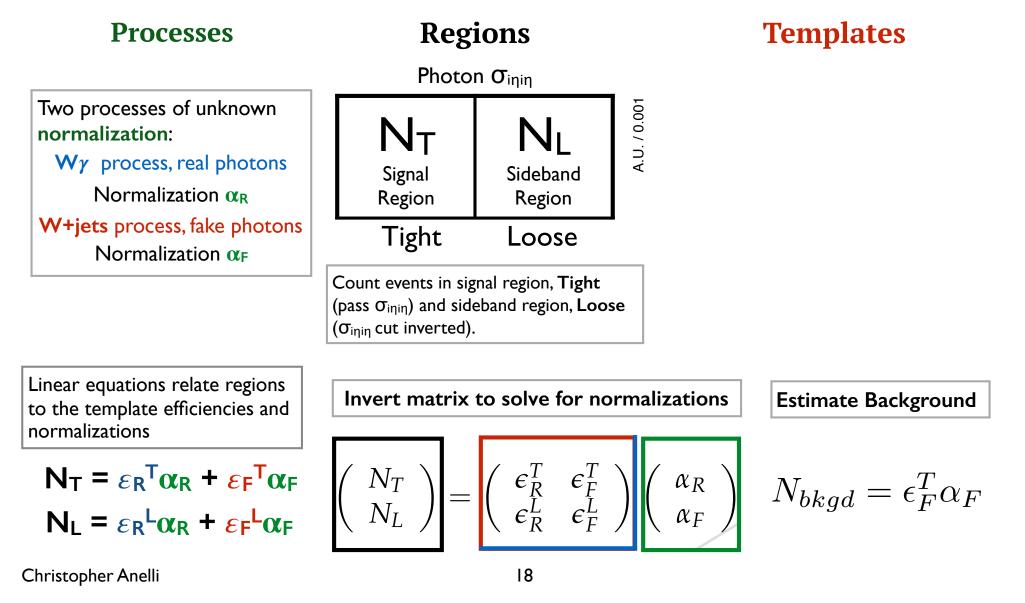
Christopher Anelli

Conclusion

- Fiducial cross sections for $W\gamma\gamma$ and $Z\gamma\gamma$ are measured and found to be consistent with the SM predictions.
- With $W\gamma\gamma$ (µ) events limits are set on EFT couplings, in particular the f_{T0} coupling:

```
Expected: -30.5 < f_{T0} < 31.1
```

```
Observed: -37.5 < f_{T0} < 38.1
```


• For the future: Approval of the $W\gamma\gamma$ electron channel. Also dimension-8 EFTs can introduce forbidden, neutral quartic gauge couplings. Set limits with $Z\gamma\gamma$.

More Information

1D Template Example

Most important background in the analysis if from jets misidentified as photons. The background is estimated using a data-driven, template method.

1D Template Example, Estimating $W\gamma$ background using $\sigma_{i\eta i\eta}$ as the discriminating variable:

Object Selection

As closely as possible, our analysis cuts match the definition of the Fiducial Region (have highlighted kinematic extrapolations).

Electrons

- ✤ MVA Electron ID
 - $|\eta| < 0.8$: MVA > 0.94
 - $0.8 < |\eta| < 1.48$: MVA > 0.85
 - $0.148 < |\eta| < 2.5 : MVA > 0.92$
 - ✤ pfIso / pT < 0.15</p>
 - No Missed Hits on Track
 - Conversion Veto
- Overlap Removal
 - $\Delta R(e,\mu) < 0.4$
- ◆ pT > 30 GeV

https://twiki.cern.ch/twiki/bin/ viewauth/CMS/ MultivariateElectronIdentification

Muons

- Tight Muon ID
 - Global and PF Muon
 - Global Track Fit $\chi 2 < 10$
 - ✤ 1+ hit in Muon Chamber
 - Muon segs. in 2 + stations
 - ★ d0 < 0.2
 - ★ z0 < 0.5
 - ✤ 1+ Pixel hits on ID Track
 - 5+ track layers on ID Track
 - ✤ PF Isolation

 $\text{RelIso}_{\text{PF}} = \frac{I_{\text{CH}} + \max(0, I_{\text{NH}} + I_{\gamma} - \Delta\beta * I_{\text{CH-PU}})}{p_{\star}^{\text{muon}}},$

✤ pT > 25 GeV

https://twiki.cern.ch/twiki/bin/view/ CMSPublic/SWGuideMuonId

Photons

- Medium Photon ID
 - ✤ PF Photon
 - ↔ H/E < 0.05
 - Barrel (Endcap)
 - σ_{iηiη} < 0.011 (0.033)
 - Charged Hadron Isolation< 1.5 (1.2)
 - Neutral Hadron Isolation
 < 1.0 (1.5)+ 0.04*pT
 - Photon Isolation
 < 0.7 (1.0) + 0.005*pT
- Overlap Removal
 - $\bullet \qquad \Delta R(\ell, \gamma) < 0.4$
- ✤ pT > 15 GeV
- + |η | < 2.5
- No Endcap Endcap γ's

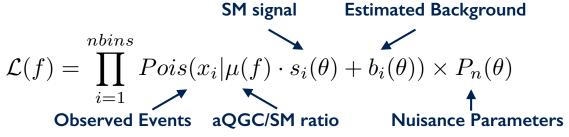
https://twiki.cern.ch/twiki/bin/viewauth/ CMS/CutBasedPhotonID2012

Negligible Backgrounds

Negligible backgrounds includes: jets faking a leptons, photons faking leptons, and multiple collisions (no vertex associated with the photon)

MadGraph Reweighting

MadGraph is used to simulate the Effective Field Theories. Use Reweighting Method.


$$W_{new} = |M_{new}|^2 / |M_{old}|^2 * W_{old}$$
.

For the analysis, generate a range of coupling strengths for each EFT.

Dimension-8 Theory	Coupling Strength Range	Step Size	Generated Events
$L_{T,0} \& L_{T,1} \& L_{T,2}$	-50×10^{-12} : 50×10^{-12}	5×10^{-12}	119,875
$L_{M,0} \& L_{M,1}$	$-5000 \times 10^{-12} : 5000 \times 10^{-12}$	500×10^{-12}	$120,\!665$
$L_{M,2} \& L_{M,3}$	-1000×10^{-12} : 1000×10^{-12}	100×10^{-12}	$120,\!665$

Likelihood

For likelihood, observed number of events follows a Poisson distribution. Product over channels and detector regions.

Christopher Anelli

Other Triboson Measurements

An 8TeV $W\gamma\gamma$ measurement is also carried out by ATLAS (<u>http://arxiv.org/abs/1503.03243</u>), and an 8TeV $WV\gamma$ measurement, V can be a W or Z, by CMS (<u>http://arxiv.org/abs/1404.4619</u>).

- Cannot directly compare two fiducial cross-section measurements (especially for final states containing photons) without considering the different fiducial definitions.
- ATLAS measures a $W\gamma\gamma$ inclusive (jets) fiducial cross section 1.9 σ above their SM prediction.
- CMS sets a 95% CL upper limit on the $WV\gamma$ cross section that is a factor of 3.4 above their SM prediction.
- Comparison of the observed and expected limits on the f_{T0} EFT coupling:

Limits	ATLAS $W\gamma\gamma$	CMS $W\gamma\gamma~(\mu)$	$CMS \ WV\gamma$
Observed	$16 < \frac{f_{T0}}{\Lambda^4} < 16$	$-38 < \frac{f_{T0}}{\Lambda^4} < 38$	$-25 < \frac{f_{T0}}{\Lambda^4} < 24$
Expected	$22 < \frac{f_{T0}}{\Lambda^4} < 22$	$-31 < \frac{f_{T0}}{\Lambda^4} < 31$	$-27 < \frac{f_{T0}}{\Lambda^4} < 27$

Other Dimension-8 EFT Limits

Public CMS results for the limits on the $f_{M,i}$ and $f_{T,i}$ couplings. In addition to triboson measurements limits are also set by measurements of vector boson scattering (VBS).

Dimension 8 f_{M,i}

Dimension	8	f _{T,i}
-----------	---	-------------------------

Jan 2016	CMS ATLAS	Channel	Limits	∫ <i>L</i> dt	√s	Jan 201	6 CMS -				
_{M,0} /Λ ⁴		WVγ	[-7.7e+01, 8.1e+01]		8 TeV		ATLAS	Channel	Limits	/Ldt	√s
M,O / 1 -		Zγ	[-7.1e+01, 7.5e+01]			· · · 4				•	
		wγ	[-7.7e+01, 7.4e+01]	19.7 fb ⁻¹		$f_{T,0} / \Lambda^4$	+	Wγγ	[-1.6e+01, 1.6e+01]	20.3 fb ⁻¹	8 Te
	F-1	ss WW	[-3.3e+01, 3.2e+01]				H	WVγ	[-2.5e+01, 2.4e+01]	19.3 fb ⁻¹	8 Te
	E.	γγ→WW	[-1.5e+01, 1.5e+01]	5.1 fb ⁻¹	7 TeV		F=-1	Zγ	[-3.8e+00, 3.4e+00]	19.7 fb ⁻¹	8 Te
	H	γγ→WW	[-4.6e+00, 4.6e+00]	19.7 fb ⁻¹	8 TeV			Wγ	[-5.4e+00, 5.6e+00]	19.7 fb ⁻¹	
$_{M,1}/\Lambda^4$	łI	WVγ	[-1.3e+02, 1.2e+02]	19.3 fb ⁻¹	8 TeV			vvy			
	H	Zγ	[-1.9e+02, 1.8e+02]	19.7 fb ⁻¹			F4	ss WW	[-4.2e+00, 4.6e+00]	19.4 fb ⁻¹	8 Te
	⊢−− 1	Wγ	[-1.2e+02, 1.3e+02]	19.7 fb ⁻¹		$f_{T,1}/\Lambda^4$		Ζγ	[-4.4e+00, 4.4e+00]	19.7 fb ⁻¹	8 Te
	HI	ss WW	[-4.4e+01, 4.7e+01]	19.4 fb ⁻¹		1,1		Wγ	[-3.7e+00, 4.0e+00]	19.7 fb ⁻¹	8 Te
		γγ→WW	[-5.7e+01, 5.7e+01]	5.1 fb ⁻¹	7 TeV		⊢+	٧Vγ			
	[···]	γγ→WW	[-1.7e+01, 1.7e+01]	19.7 fb ⁻¹			F1	ss WW	[-2.1e+00, 2.4e+00]	19.4 fb ⁻¹	8 Te
{M,2} /Λ ⁴	+I	Ψγγ	[-2.5e+02, 2.5e+02]	20.3 fb ⁻¹		$f{T,2}/\Lambda^4$	►	Ζγ	[-9.9e+00, 9.0e+00]	19.7 fb ⁻¹	8 Te
	н	Zγ	[-3.2e+01, 3.1e+01]	19.7 fb ⁻¹		1,2		Wγ	[-1.1e+01, 1.2e+01]		
	н	Wγ	[-2.6e+01, 2.6e+01] [-4.7e+02, 4.4e+02]	19.7 fb ⁻¹			⊢−−−−−	٧vγ	[-1.10+01, 1.20+01]	19.7 fb ⁻¹	
_{M,3} /Λ ⁴		Η Ψγγ Ζγ	[-4.7e+02, 4.4e+02] [-5.8e+01, 5.9e+01]	20.3 fb ⁻¹ 19.7 fb ⁻¹			+4	ss WW	[-5.9e+00, 7.1e+00]	19.4 fb ⁻¹	8 Te
		Ζγ Wγ	[-4.3e+01, 4.4e+01]	19.7 fb ⁻¹		$f_{T,5}/\Lambda^4$	⊢−1	Wγ	[-3.8e+00, 3.8e+00]	19.7 fb ⁻¹	8 Te
$_{M,4}/\Lambda^4$	 	Wγ	[-4.0e+01, 4.0e+01]	19.7 fb ⁻¹		$f_{T,6}/\Lambda^4$	►	Wγ	[-2.8e+00, 3.0e+00]	19.7 fb ⁻¹	8 Te
M,5 /Λ ⁴	<u>⊢−</u> I	· Wγ	[-6.5e+01, 6.5e+01]	19.7 fb ⁻¹				•			
M,6 /Λ ⁴	FI	Wγ	[-1.3e+02, 1.3e+02]			$f_{T,7} / \Lambda^4$	▶====1	Wγ	[-7.3e+00, 7.7e+00]	19.7 fb ⁻¹	816
	F4	ss WW	[-6.5e+01, 6.3e+01]	19.4 fb ⁻¹	8 TeV	$f_{T,8} / \Lambda^4$	H	Zγ	[-1.8e+00, 1.8e+00]	19.7 fb ⁻¹	8 Te
$_{M,7}/\Lambda^4$	⊢	Wγ	[-1.6e+02, 1.6e+02]	19.7 fb ⁻¹		$f_{T,9}/\Lambda^4$		Ζγ	[-4.0e+00, 4.0e+00]	19.7 fb ⁻¹	8 Te
I	H	ss WW	[-7.0e+01, 6.6e+01]	1 ₁ 9.4 fb ⁻¹	8 TeV	1,9 /				10.7 10	
-500	0	500	1000	1500			0		50		
-300	0		GC Limits @9		[T_a]/-41		-	aO	GC Limits @95	% C I	