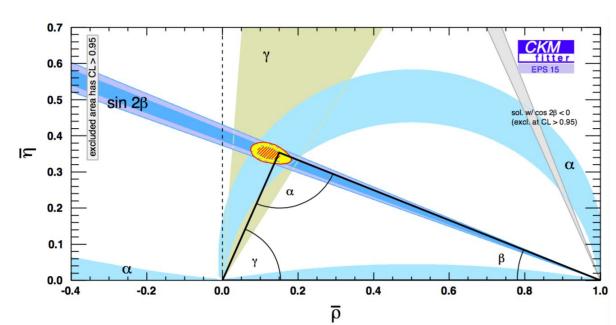
Observation of CP violation in $B^0 \rightarrow D_{CP}^{(*)}h^0$ with a combined analysis of BABAR and Belle data

PRL 115, 121604

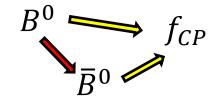
Abi Soffer Tel Aviv University On behalf of the BABAR and Belle Collaborations

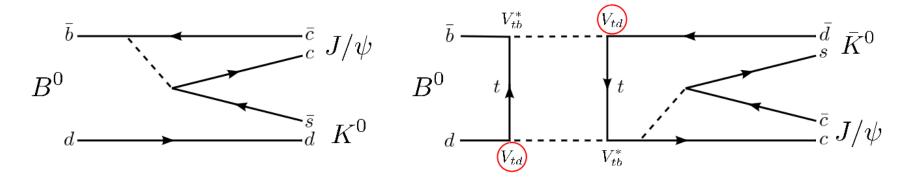
Outline

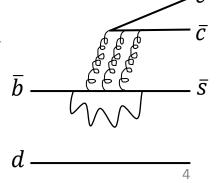

- Quick intro to CP violation in the SM
- Measuring sin 2β at an asymmetric *B* factory
- The BABAR and Belle experiments
- The analysis and its results
- Summary

Quick intro to CP Violation in the SM

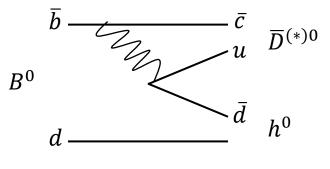
- Yukawa couplings of Higgs to fermion fields \rightarrow quark mixing and masses
- Charged-current Lagrangian in the quark-mass basis:


$$-\frac{g}{\sqrt{2}}\left(\bar{u}_{L},\bar{c}_{L},\bar{t}_{L}\right)\gamma^{\mu}W_{\mu}^{\pm}\underbrace{\left(\begin{array}{ccc}V_{ud}&V_{us}&V_{ub}\\V_{cd}&V_{cs}&V_{cb}\\V_{td}&V_{ts}&V_{tb}\end{array}\right)}_{V_{CKM}}\left(\begin{array}{c}d_{L}\\s_{L}\\b_{L}\end{array}\right)+h.c.$$
e angles and 1

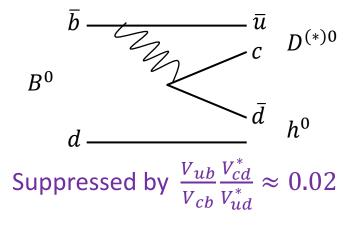

- V_{CKM} has 3 angles and 1 complex phase $\delta_{CP} \rightarrow CPV$
- δ_{CP} related to angles α, β, γ of the unitarity triangle $\sum_{i=u.c.t} V_{ib}V_{id}^* = 0$
- α, β, γ measured from CP asymmetries: comparison of process rates in *B* and \overline{B} decays


Measuring $\beta = \arg[-V_{cd}V_{cb}^*/V_{td}V_{tb}^*]$

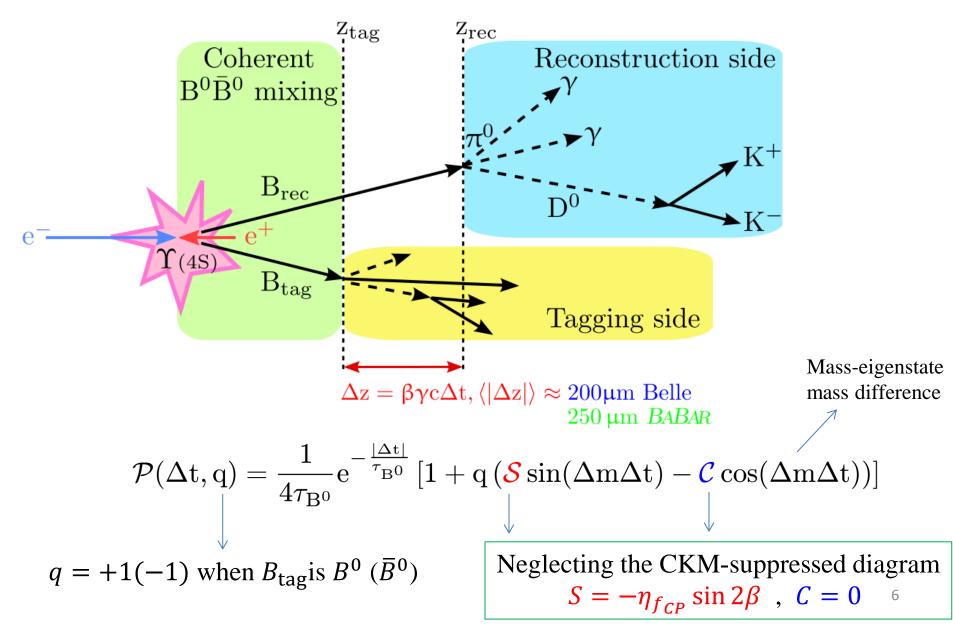
- Measure in processes with interference between
 - Direct decay of a B^0 to a CP-eigenstate f_{CP}
 - $-B^0 \rightarrow \overline{B}^0$ mixing followed by decay to the same final state
- E.g., in $B^0 \rightarrow J/\psi K_S$ ("golden mode"):


- $b \rightarrow c\bar{c}s$ decays may be affected by small penguin contribution, sensitive to new physics
 - \rightarrow motivates cross checks with other modes
 - particularly in the LHCb-upgrade / Belle-II era

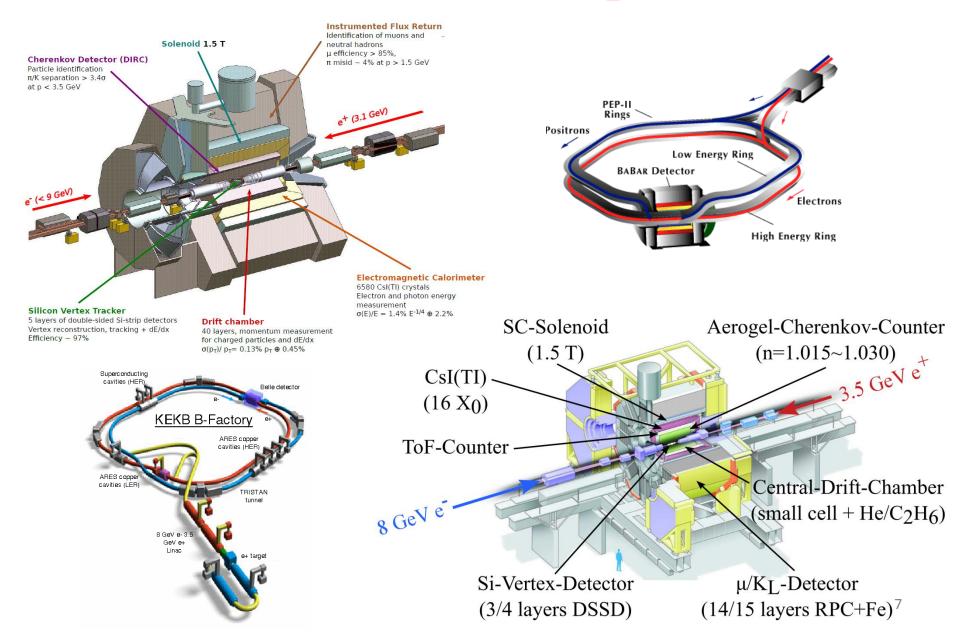
 R^0

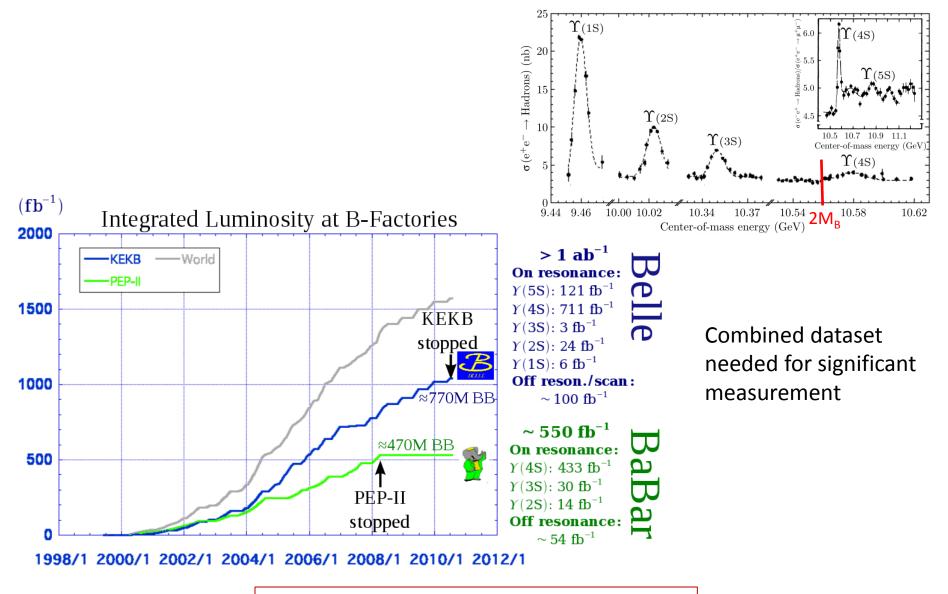

sin 2
$$\beta$$
 from $B^0 \rightarrow D_{CP}^{(*)} h^0$

- One such cross check uses $B^0 \rightarrow D_{CP}^{(*)} h^0$, where
 - $D_{CP} \equiv D \rightarrow K^{+}K^{-}, K_{S}\pi^{0}, K_{S}\omega$ $D_{CP}^{*} \equiv D^{*} \rightarrow D_{CP}\pi^{0}$ $h^{0} \equiv \pi^{0}, \eta, \omega$
- Only tree-level diagrams (less new-physics sensitivities):



Dominant


- Experimental difficulties:
 - Small branching fraction, $O(10^{-6})$
 - Low reconstruction efficiencies
 - High background


$\sin 2\beta$ at an asymmetric *B* factory

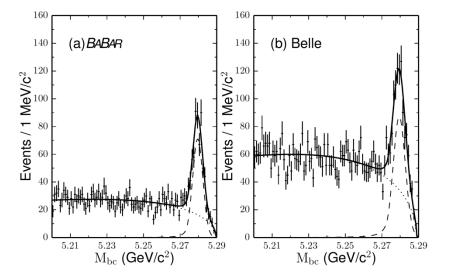
BABAR and Belle experiments

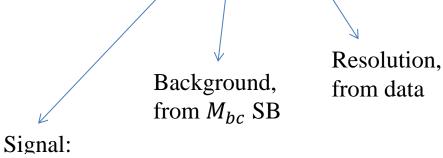
Data sets

Using $1.24 \times 10^9 B\overline{B}$ pairs and $> 1.1 \text{ ab}^{-1}$

Analysis

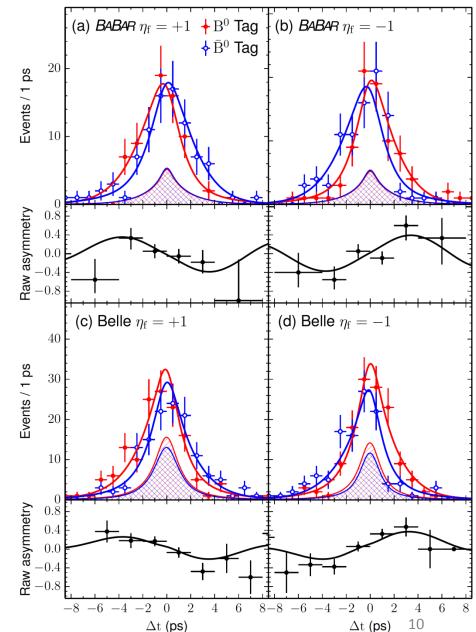
- Joint analysis when clear benefit over combining separate results
 - Neither experiment has enough statistics for significant result
- Apply coherent analysis strategy to both data sets:
 - Almost same selections and other procedures
 - But often employing different state-of-the-art for each detector
- Dominant background from "continuum" $e^+e^- \rightarrow q\bar{q}$
 - Suppressed with neural networks of event-shape variables
- Signal yield from distributions of $M_{bc} \equiv \sqrt{E_{beam}^2 p_B^2}$:




TABLE I. Summary of $\overline{B}^0 \to D_{CP}^{(*)} h^0$ signal yields.

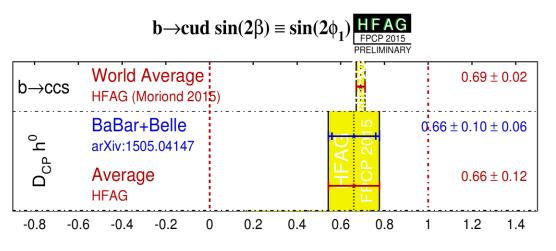
Decay mode	BABAR	Belle
$\overline{B}{}^0 \to D_{CP} \pi^0$	241 ± 22	345 ± 25
$\overline{B}{}^0 \to D_{CP}\eta$	106 ± 14	148 ± 18
$\overline{B}{}^0 \to D_{CP}\omega$	66 ± 10	151 ± 17
$\overline{B}{}^0 o D^*_{CP} \pi^0$	72 ± 12	80 ± 14
$\overline{B}{}^0 o D^*_{CP} \eta$	39 ± 8	39 ± 10
$\overline{B}{}^0 \to D_{CP}^{(*)} h^0$ total	508 ± 31	757 ± 44
		9

Obtaining $\sin 2\beta$


• Unbinned maximum-likelihood fit of the Δt distributions to the model

 $(P_s + P_h) \otimes R$

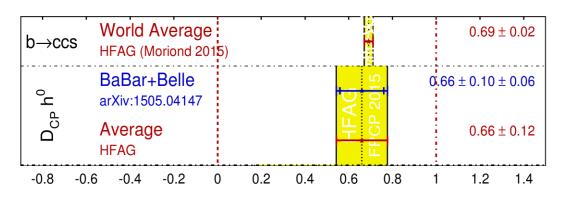
 $\mathcal{P}(\Delta t, q) = \frac{1}{4\tau_{B^0}} e^{-\frac{|\Delta t|}{\tau_{B^0}}} \left[1 + q\left(\boldsymbol{\mathcal{S}}\sin(\Delta m \Delta t) - \boldsymbol{\mathcal{C}}\cos(\Delta m \Delta t)\right)\right]$

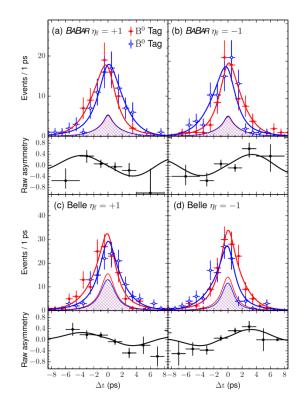

- Each event's signal weight comes from its M_{bc} value
- Floating in the fit: *S* and *C*

Results

$-\eta_{f_{CP}}S = 0.66 \pm 0.10 \text{ (stat)} \pm 0.06 \text{ (syst)}$ $C = -0.02 \pm 0.07 \text{ (stat)} \pm 0.03 \text{ (syst)}$

S = 0 excluded at 5.4 σ


~ 0.2 σ agreement with $b \rightarrow c\bar{c}s$


S	\mathcal{C}
1.5	1.4
2.0	0.4
0.4	0.1
0.6	0.3
0.3	0.3
0.2	< 0.1
0.6	0.8
4.9	0.9
0.1	1.4
5.6	2.5
	$ \begin{array}{r} 1.5 \\ 2.0 \\ 0.4 \\ 0.6 \\ 0.3 \\ 0.2 \\ 0.6 \\ 4.9 \\ 0.1 \\ \end{array} $

Systematic uncertainties (%)

Summary

- First observation of significant CP violation in $B^0 \rightarrow D_{CP}^{(*)} h^0$
- Excludes the no-CPV hypothesis at 5.4σ
- Result consistent with SM expectation, i.e.,
 - $-\sin 2\beta$ from $b \to c\bar{c}s$
 - C consistent with 0
- First analysis using combined BABAR+Belle data
- First collider analysis performed with 1.1 ab⁻¹ of data

