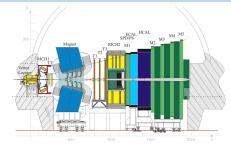


CP violation and mixing in charm from LHCb

Sam Harnew

Outline

- Charm at LHCb.
- Introduction to charm mixing and CPV.
- D-mixing in $D \to K\pi\pi\pi$ decays [preliminary result].
- $\Delta A_{\rm CP}$ in $D \to hh$ decays [new result].
- Conclusions.


Going to show just a couple of the most recent LHCb results - many more have already been published!

Charm at LHCb

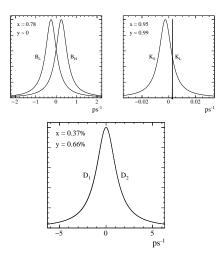
- LHCb has the world's largest sample of charm decays.
- ▶ $\mathcal{O}(5 \times 10^{12}) \ c\bar{c}$ pairs produced in LHCb Run1...
- ▶ and plenty more to come in Run2.

Run1 @ 7 TeV* $\sigma(c\bar{c}) = 1419 \pm 12(\text{stat}) \pm 116(\text{syst}) \pm 65 \text{ (frag) } \mu\text{b}$ [1] Run2 @ 13TeV* $\sigma(c\bar{c}) = 2940 \pm 3 \text{ (stat)} \pm 180(\text{syst}) \pm 160(\text{frag)} \,\mu\text{b}$ [2] * $p_{\text{T}} < 8 \text{ GeV}, 2.0 < y < 4.5$

- High COM collision energy gives D mesons a large flight distance in LHCb.
- Tracking within $5 \,\mathrm{mm}$ of the beam
 - Excellent decay-time resolution of $\sim 0.1 \tau$.
- [1] Nuclear Physics, Section B 871 (2013), pp. 1-20 [2] arXiv:1510.01707

Sam Harnew

Mixing in neutral mesons


 Mass eigenstates are a superposition of flavour eigenstates:

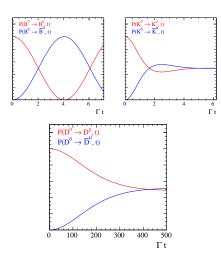
$$|D_1\rangle = p|D^0\rangle + q|\overline{D}^0\rangle$$
$$|D_2\rangle = p|D^0\rangle - q|\overline{D}^0\rangle$$

Mixing depends on the mass and width difference:

$$x \equiv (m_2 - m_1)/\Gamma$$
$$y \equiv (\Gamma_2 - \Gamma_1)/2\Gamma$$

- ► Takes ~ 1000 D⁰ lifetimes for a full oscillation.
- D mixing now well established with several independent observations.

Mixing in neutral mesons


 Mass eigenstates are a superposition of flavour eigenstates:

$$|D_1\rangle = p|D^0\rangle + q|\overline{D}^0\rangle$$
$$|D_2\rangle = p|D^0\rangle - q|\overline{D}^0\rangle$$

Mixing depends on the mass and width difference:

$$x \equiv (m_2 - m_1)/\Gamma$$
$$y \equiv (\Gamma_2 - \Gamma_1)/2\Gamma$$

- ► Takes ~ 1000 D⁰ lifetimes for a full oscillation.
- D mixing now well established with several independent observations.

CPV in charm

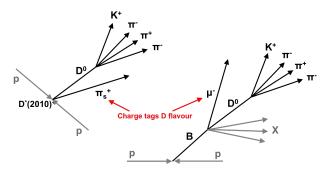
Direct CPV: $|\mathcal{A}(D^0 \to f)| \neq |\mathcal{A}(\overline{D}^0 \to \overline{f})|$

- Search in time-integrated measurements of D^0 or D^{\pm} decays.
- Most likely in Singly Cabbibo suppressed decays such as $D^0 \rightarrow hh$ [see later]

Indirect CPV:

- ▶ in mixing: $\mathcal{P}(D^0 \to \overline{D}^0) \neq \mathcal{P}(\overline{D}^0 \to D^0)$
- ► in interference: $\arg\left(\frac{\mathcal{A}(D^0 \to f)}{\mathcal{A}(D^0 \to \overline{D}^0 \to f))}\right) \neq \arg\left(\frac{\mathcal{A}(\overline{D}^0 \to \overline{f})}{\mathcal{A}(\overline{D}^0 \to D^0 \to \overline{f})}\right)$
 - Requires time-dependent analysis

No evidence for CPV in charm

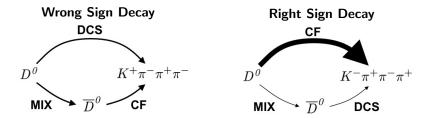

Sam Harnew

Flavour Tagging

- In both mixing and CPV studies it's important to tag the D^0 flavour.
- Two methods at LHCb:
 - $D^*(2010)^+ \rightarrow D^0 \pi_s^+$ decays [used for both analyses presented here].
 - Semileptonic *B* meson decays.

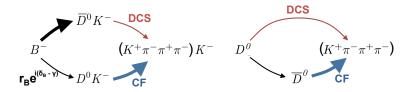
D-mixing in $D^0 \to K^+ \pi^- \pi^+ \pi^-$ decays

Preliminary result: soon to be submitted to PRL



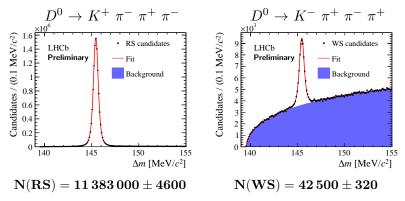
Formalism + Motivation

- Measure the time dependent ratio of WS to RS decays
- ► Sensitive to D-mixing (x, y), interference between CF and DCS amplitudes $(R_D^{K3\pi}, \delta_D^{K3\pi})$ and their relative magnitudes $r_D^{K3\pi}$.
- Use mixing parameters x, y as input to constrain $R_D^{K3\pi}, \delta_D^{K3\pi}$


 $\frac{WS(t)}{RS(t)} \approx (r_D^{K3\pi})^2 - r_D^{K3\pi} R_D^{K3\pi} (y \cos \delta_D^{K3\pi} - x \sin \delta_D^{K3\pi}) \Gamma t + \frac{x^2 + y^2}{4} (\Gamma t)^2$

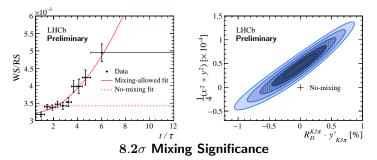
From charm mixing to CKM phase γ

- ▶ Why are we interested in the relative magnitude and interference of CF and DCS amplitudes? $(R_D^{K3\pi}, \delta_D^{K3\pi} \text{ and } r_D^{K3\pi})$
- ▶ If we look at the decay $B^- \to DK^-, D \to K^+\pi^-\pi^+\pi^-$ things look remarkably similar...


- This mode is sensitive to the CKM phase γ , but requires prior knowledge of $R_D^{K3\pi}$, $\delta_D^{K3\pi}$ and $r_D^{K3\pi}$.
- Constraints will be used for future determinations of γ in this decay mode.

Data sample

- Using full Run1 dataset (3 fb^{-1}) .
- Huge number of RS decays reconstructed with a high purity.



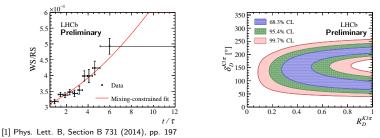
Mixing Significance

Evaluate the mixing significance by comparing the χ² between mixing and no mixing hypotheses:

Mixing-allowed:
$$r(t) = (r_D^{K3\pi})^2 - r_D^{K3\pi} R_D^{K3\pi} y'_{K3\pi} t + \underbrace{\frac{1}{4}(x^2 + y^2)}^c t^2$$

No-mixing: $r(t) = (r_D^{K3\pi})^2$

Sam Harnew

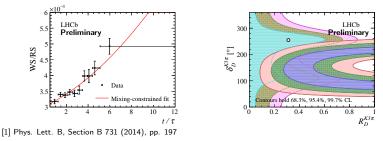


Mixing-constrained fit

 Also perform a mixing-constrained fit where external constraints are included for mixing parameters x and y (HFAG)

$$r(t) = (r_D^{K3\pi})^2 - r_D^{K3\pi} R_D^{K3\pi} (y \cos \delta_D^{K3\pi} - x \sin \delta_D^{K3\pi}) t + \frac{1}{4} (x^2 + y^2) t^2$$

- This allows constraints in the $(R_D^{K3\pi}, \delta_D^{K3\pi})$ plane.
 - Previous constraints from ψ(3770) → D_{CP+}D_{CP−} at CLEO-c [1].
 - \blacktriangleright Naive combination gives a factor ~ 2 improvement on constraints.



Mixing-constrained fit

 Also perform a mixing-constrained fit where external constraints are included for mixing parameters *x* and *y* (HFAG)

$$r(t) = (r_D^{K3\pi})^2 - r_D^{K3\pi} R_D^{K3\pi} (y \cos \delta_D^{K3\pi} - x \sin \delta_D^{K3\pi}) t + \frac{1}{4} (x^2 + y^2) t^2$$

- This allows constraints in the $(R_D^{K3\pi}, \delta_D^{K3\pi})$ plane.
 - Previous constraints from $\psi(3770) \rightarrow D_{CP+}D_{CP-}$ at CLEO-c [1].
 - \blacktriangleright Naive combination gives a factor ~ 2 improvement on constraints.

Time integrated asymmetries in $D^0 \to K^+ K^-$ and $D^0 \to \pi^+ \pi^-$ decays.

arXiv:1602.03160 submitted to PRL

Formalism

• First define $A_{\rm CP}(f)$ for some final state f.

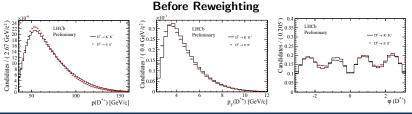
$$A_{\rm CP}(f) \equiv \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to \overline{f})}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to \overline{f})} \equiv a_{\rm CP}^{\rm dir}(f) \left(1 + \frac{\langle t(f) \rangle}{\tau} y_{\rm CP}\right) + \frac{\langle t(f) \rangle}{\tau} a_{\rm CP}^{\rm ind}$$

▶ Then define $\Delta A_{\rm CP}$ between $D^0 \to \pi^+\pi^-$ and $D^0 \to K^+K^-$.

$$\Delta A_{\rm CP} \equiv A_{\rm CP}(K^+K^-) - A_{\rm CP}(\pi^+\pi^-) \equiv \Delta a_{\rm CP}^{\rm dir} \left(1 + \frac{\overline{\langle t \rangle}}{\tau} y_{\rm CP}\right) + \frac{\Delta \langle t \rangle}{\tau} a_{\rm CP}^{\rm ind}$$

- Contributions from indirect CPV are either neglible ($y_{\rm CP} \sim 0.5\%$) or cancel.
- SM predicts a^{dir}_{CP}(π⁺π[−]) ~ −a^{dir}_{CP}(K⁺K[−]) so direct CPV contributions are enhanced (< 10^{−2} within SM).

Production and detection aysmmetries


What we actually measure is:

$$A_{\rm CP}^{\rm RAW}(f) \equiv A_{\rm CP}(f) + \overbrace{A_{\rm D}(f)}^{=0} + \overbrace{A_{\rm D}(\pi_s^+)}^{\leq 1\%} + \overbrace{A_{\rm P}(D^{*+})}^{\sim 1\%}$$

Giving:

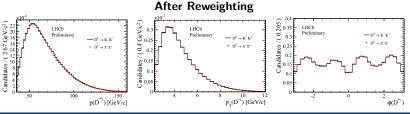
$$\Delta A_{\rm CP}^{\rm RAW} \equiv A_{\rm CP}(f) + \Delta A_{\rm D}(\pi_s^+) + \Delta A_{\rm P}(D^{*+})$$

▶ For a given kinematical region of the D^{*+} , $\Delta A_D(\pi_s^+)$ and $\Delta A_P(D^{*+})$ are zero.

Sam Harnew

February 12, 2016

Production and detection aysmmetries


What we actually measure is:

$$A_{\rm CP}^{\rm RAW}(f) \equiv A_{\rm CP}(f) + \overbrace{A_{\rm D}(f)}^{=0} + \overbrace{A_{\rm D}(\pi_s^+)}^{\leq 1\%} + \overbrace{A_{\rm P}(D^{*+})}^{\sim 1\%}$$

Giving:

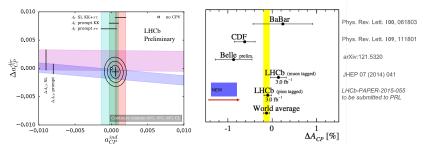
$$\Delta A_{\rm CP}^{\rm RAW} \equiv A_{\rm CP}(f) + \Delta A_{\rm D}(\pi_s^+) + \Delta A_{\rm P}(D^{*+})$$

▶ For a given kinematical region of the D^{*+} , $\Delta A_D(\pi_s^+)$ and $\Delta A_P(D^{*+})$ are zero.

Sam Harnew

February 12, 2016

15 / 19



Result

$$\Delta A_{\rm CP} = (-0.10 \pm 0.08 (\text{stat}) \pm 0.03 (\text{sys})\%)$$

• Most precise determination of $\Delta A_{\rm CP}$, and compatible with muon-tagged result.

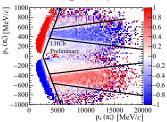
No evidence for direct or indirect CPV in charm.

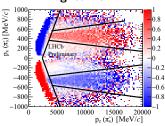
Sam Harnew

Conclusions

- ► LHCb has the world's largest sample of charm decays.
- ► Large number of publications, too many to cover here...
- ▶ First observation of *D*-mixing in $D \to K^+ \pi^- \pi^+ \pi^-$ decays.
 - \blacktriangleright Also provides constraints on charm interference parameters that are useful input for CKM phase γ determination.
- Most precise determination of a time-integrated CP asymmetry in charm.
 - Sadly, no hints of CPV.
- Run 2 of the LHC has started many new and updated results to come soon!

Backup


Sam Harnew



Detection asymmetries.

- ► Trajectories of soft pion are bent in different directions for +ve and -ve.
- At LHCb it is possible to flip the magnet polarity, cancelling out such asymmetries.
 - but we do not rely on this cancellation remove areas of large asymmetry.

Magnet Up

Magnet Down