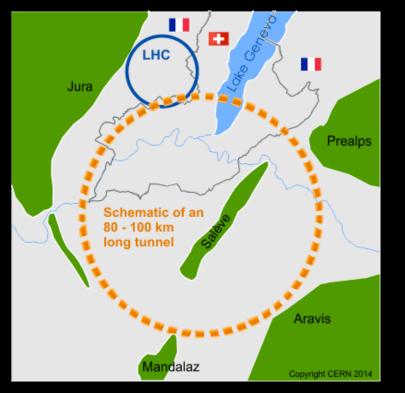
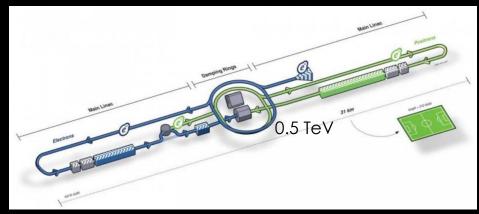


Recent developments towards very high efficiency klystrons

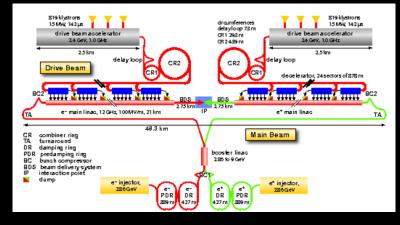
Erk Jensen/CERN presenting for the HEIKA Collaboration *)


HEIKA: "High Efficiency International Klystron Activity"

I. Syratchev/CERN, A. Baikov/MFUA, I. Guzilov/VDBT, C. Lingwood, D. Constable, V. Hill/U Lancaster, R. Marchesin, Q. Vuillemin/TED, C. Marrelli/ESS, R. Kowalczyk/L-3, T. Habermann/CPI, A. Jensen/SLAC


Motivation

2


Future large scale accelerators

FCC ee: CW, 0.8 GHz, P_{RF} total= 110 MW

ILC e^{+e-}: Pulsed, 1.3 GHz, P_{RF} total= 88 MW

CLIC $e^{+e^{-}}$: Pulsed, 1.0 GHz, P_{RF} total= 180 MW

CWRF 2016 Grenoble - Jensen: High Efficiency Klystrons

21-June-2016

FCC parameters

	FCC-hh	Z	Z	W	H	tī
Beam energy [GeV]	50,000	45	5.6	80	120	175
Beam current [mA]	0.5	14	50	152	30	6.6
Bunches / beam		30180	91500	5260	780	81
Bunch spacing [ns]	25	7.5	2.5	50	400	4000
Bunch population [10 ¹¹]	1.0	1.0	0.33	0.6	0.8	1.7
Crossing angle at IP [mrad]	30					
Bunch length [mm] (total)	300	6.7	3.8	3.1	2.4	2.5
Energy loss / turn [GeV]		0.03		0.33	1.67	7.55
Total RF voltage [GV]	0.032	0.4	0.2	0.8	3	10
RF frequency [MHz]	400					
cells×cavities×beams	1×25×2	1×150×2	1×75×2	2×150×2	2×400×2	2×1340
Luminosity/IP for 2IPs [10 ³⁴ cm ⁻² s ⁻¹]		207	89.4	19.1	5.1	1.3
SR power (total) \approx total RF power [MW]		100				
Electric power for RF [MW]		≈ 165				
Total cryogenic power [MW]	0.4	2	2	5	23	39

The significance of efficiency

Let us assume 70% efficiency for RF power generation – now what happens if we get 1% less?

- With 105 MW RF output and at 70% efficiency, this means that 1 percentage point less means
 - Input power up from 150 MW to 152.2 MW, waste heat up from 45 MW to 47.2 MW.
 - 2.2 MW more electricity consumed (assuming 5000 h: 10 GWh/year or 400 k€/year)
 - 2.2 MW more heat produced and wasted in the environment.
 - The electrical installation has to be larger by 1.45%!
 - The cooling and ventilation has to be larger by 4.8%!
- All the above are significant!
- Work on increasing the useable efficiency is worth every penny invested!

Eucard²network "EnEfficient"

EUCARD² ("**European Coordination for Accelerator R&D**") is co-funded by its partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453, and runs from 2013 to 2017.

- Work Package 3 of EuCARD² is the networking activity "EnEfficient", which stimulates developments, supports accelerator projects, thesis studies and similar in the areas of
 - Energy recovery from cooling circuits
 - Higher electronic efficiency RF power generation
 - Short term energy storage systems
 - Virtual power plant
 - Beam transfer channels with low power consumption
- More details under <u>www.psi.ch/enefficient</u>

M. Seidel/PSI

The idea

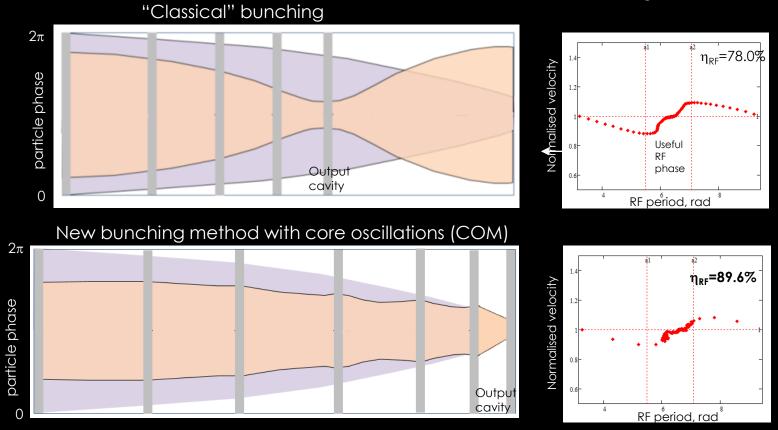
6

- 2014 saw a breakthrough in klystron theory:
 - The "congregated bunch" concept was re-introduced [V.A. Kochetova, 1981]

(later electrons faster when entering the output cavity).

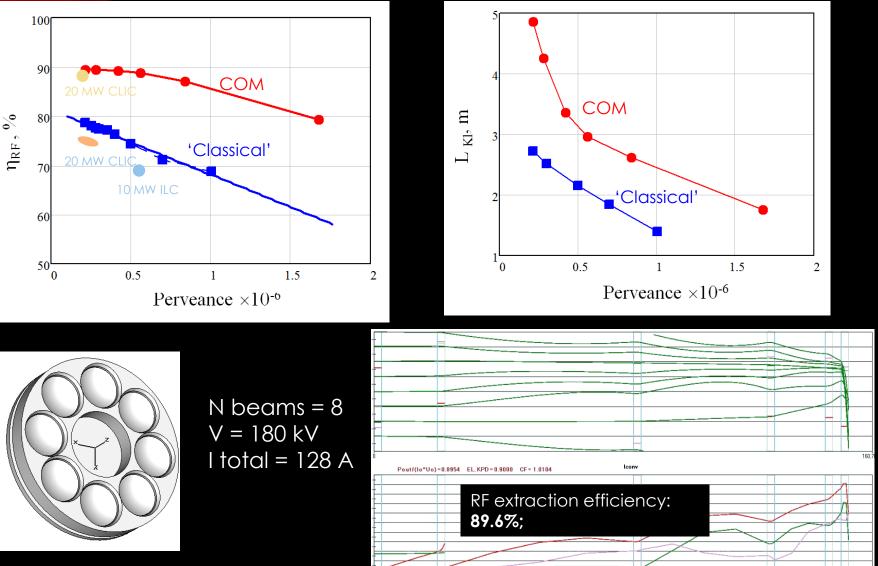
 The concept of "bunch core oscillations" was introduced [A. Yu. Baikov, et al.: "Simulation of conditions for the maximal efficiency of decimeterwave klystrons", Technical Physics, 2014]

(controlled periodic velocity modulation)


- The "BAC" method was invented [I.A. Guzilov, O.Yu. Maslennikov, A.V. Konnov, "A way to increase the efficiency of klystrons", IVEC 2013] (Bunch, Align velocities, Collect outsiders)
- These methods together promise a significant increase in klystron efficiency (approaching 90%)
- An international collaboration "HEIKA" has started prototypes are being designed. (SLAC plans to convert an existing 5045 klystron – simulations are encouraging)

HEIKA collaboration

- HEIKA "High Efficiency International Klystron Activity" is evaluating and implementing this "breakthrough".
- HEIKA Members: Labs (CERN, ESS, SLAC, CEA), Universities (MFUA, Lancaster), Industry (Thales, L3, CPI, VDBT)
- It studies theoretically and experimentally high efficiency klystrons for both pulsed (e.g. CLIC, ESS) and CW applications (FCC).
- HEIKA is well integrated with the "EnEfficient" network in EuCARD² as enabler.


I. Syratchev/CERN, A. Baikov/MFUA, I. Guzilov/VDBT, C. Lingwood, D. Constable, V. Hill/U Lancaster, R. Marchesin, Q. Vuillemin/TED, C. Marrelli/ESS, R. Kowalczyk/L-3, T. Habermann/CPI, A. Jensen/SLAC

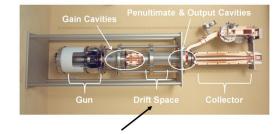
"Bunch core oscillations" explained

Link: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7194781

Comparison of the bunching methods

CWRF 2016 Grenoble - Jensen: High Efficiency Klystrons

21-June-2016


The plan(s)

10

• VDBT to build a POP prototype with the following parameters:

Parameter	specification	
RF frequency	2.99855 GHz	
Peak power	> 6 MW	
RF gain	> 45 dB	
Efficiency	> 60% (aiming at > 70%)	
Voltage	\leq 60 kV (aiming at 52 kV)	
pulse length × rep rate	$\geq 7.5 \ \mu s \times 300 \ Hz = 2.25 \cdot 10^{-3}$	

- SLAC had the idea to refurbish an existing 5045 klystron (2.856 GHz)
 - Increase of η from 45% to 55%
 - Increase output power from 65 to 85 MW!
- ... design a klystron for FCC!

The 5045 is being retrofitted to add BAC cavities in the drift space.

Aaron Jensen et al., IVEC2015

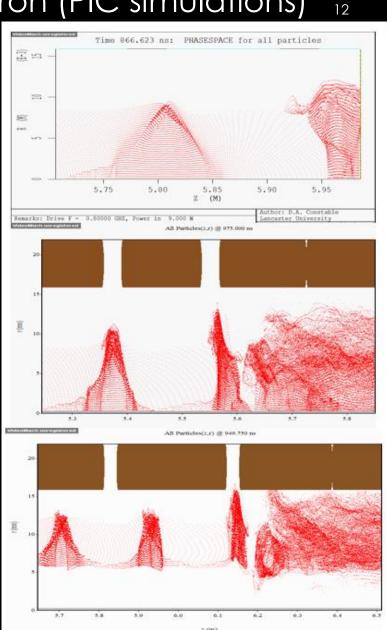
FCC klystron – initial target parameters

Operating frequency	800 MHz initially	
Target RF Output power	1.5 MW (CW)	
Voltage	40 kV	
N-beams×Current	$16 \times 2.6 \text{ A} = 42 \text{ A}$	
Target Efficiency	90 %	
Perveance	$16 \times 0.33 \ \mu K = 5.25 \ \mu K$	
Number of cavities	8	
Cathode loading	$< 2 \text{ A mm}^{-2}$	
Length	2.3 m	

PIC simulations showed that this is not easy at all – efficiency limited to about 80%

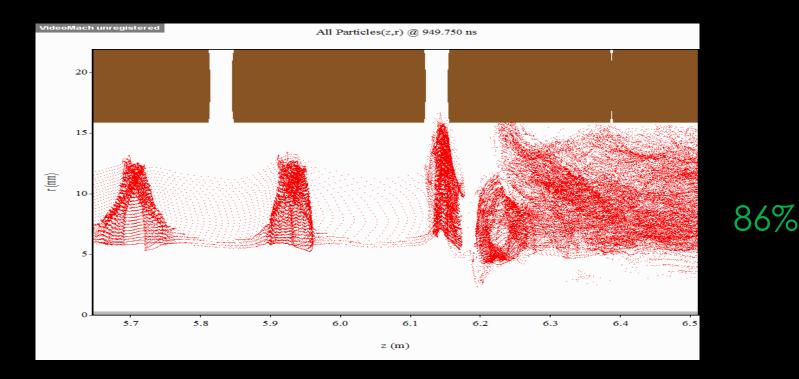
Evolution of the HEIKA CW klystron (PIC simulations)

Original 8_01 design. Saturated bunch.


79.8%

8_04. The new design of 'gentle' buncher reduced significantly radial bunch stratification.

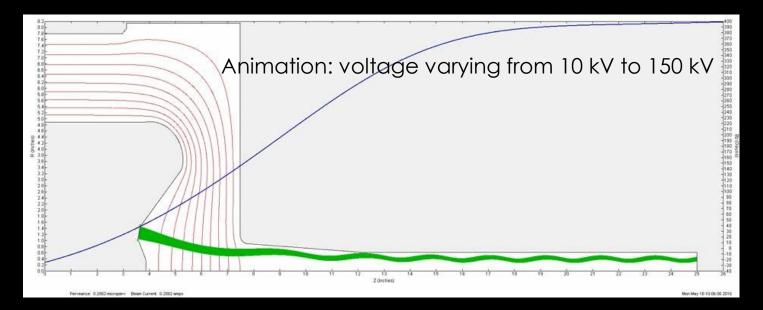
83.3%


8_H02. Hollow beam configuration with optimal geometry made bunch nearly perfect.

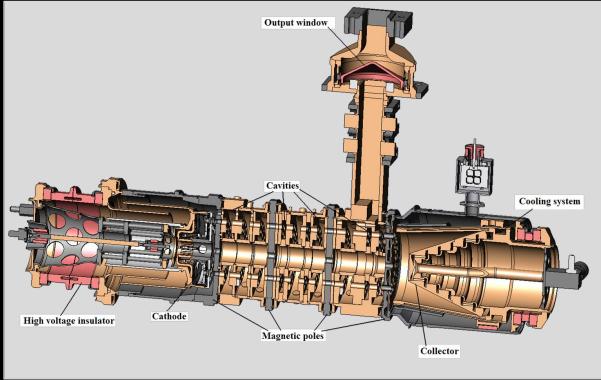
86%

CWRF 2016 Grenoble - Jensen: High Efficiency Klystrons

The way out: hollow beams!



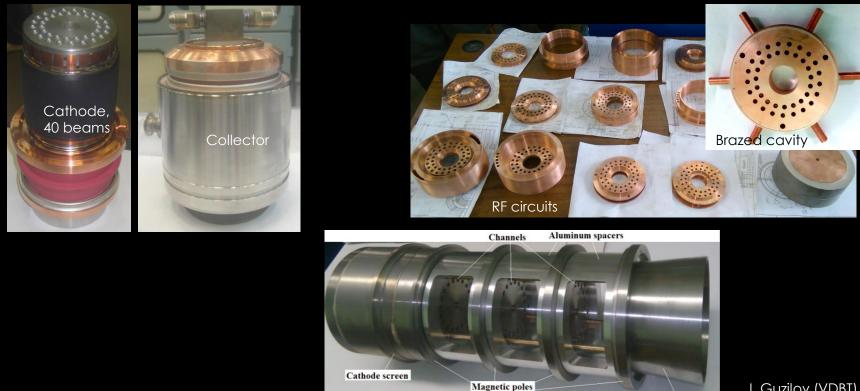
D. Constable, C. Lingwood (U Lancaster) & HEIKA collaboration


How to make a hollow beam?

 Initial simulations validating the design of a hollowbeam tube.

Bmax=400G Router(avg)=0.464" Rinner(avg)=0.323" Jc <= 0.63 A/cm2 Scallop (outer) = 1.4% Scallop (inner) = 12.4%

Progress with the VDBT prototype

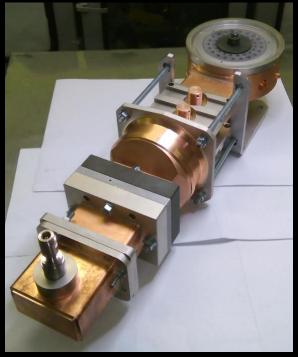

The engineering design and fabrication of parts started in 2015

I. Guzilov (VDBT)

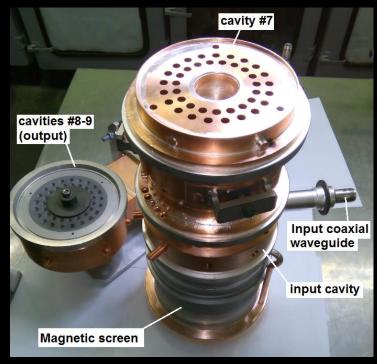
Based on an old tube that reached $\eta = 42\%$

CWRF 2016 Grenoble - Jensen: High Efficiency Klystrons

VDBT Prototype – status Aug 2015



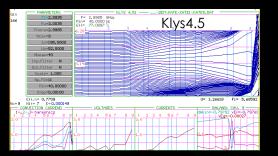
PPM focusing tuning bench


I. Guzilov (VDBT)

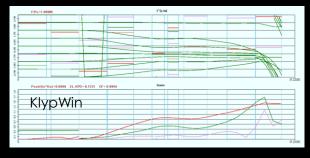
Collector screen

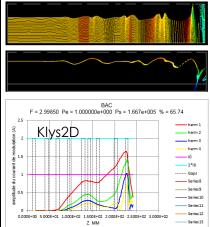
VDBT Prototype – status Dec 2015

Cavities 8 and 9 and output waveguide


Cavities during assembly

I. Guzilov (VDBT)


Progress with the VDBT prototype



Assembled prototype ready for testing

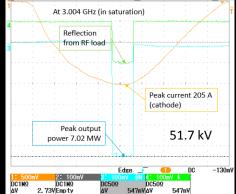
- Predictions by different simulation codes
- 1. Klys4.5 (1-D): Efficiency 77%. Original company code used to optimise the tube.
- KlypWin (1-D, A. Baikov): Efficiency 69.9%. The code used by HEIKA study for the basic design and optimisation of high efficiency klystrons.
- 3. KLYS2D (2-D, Thales): Efficiency **65.74%**.



I. Guzilov (VDBT)

VDBT Prototype – status Mar 2016

The rear view of the test set-up


Test set-up – first RF pulses

I. Guzilov (VDBT)

VDBT prototype – factory test

C3100%

Ready

5us ±23 400us

In the lab - ready to go

I. Guzilov (VDBT)

VDBT prototype factory test – results

- Initial tests of the transmission through the 40 beams (230 A) was 96%!
- Initial RF power tests resulted in 7 MW peak with 100 W drive (48 dB gain)

Parameter	specification	1 st prototype measurement (preliminary)	
RF frequency	2.99855 GHz	3.004 GHz	
Peak power	> 6 MW	7.02 MW	
RF gain	> 45 dB	48 dB	
Efficiency	> 60% (aiming at > 70%)	66%	
Voltage	\leq 60 kV (aiming at 52 kV)	51.7 kV	
pulse length × rep rate	$\geq 7.5 \; \mu s \times 300 \; Hz = 2.25 \cdot 10^{-3}$	$7.5 \ \mu s imes 300 \ Hz$	

- This result is remarkable for a 1st prototype!
- This is a beautiful confirmation of the concept!
- The measured efficiency is remarkably close to the Klys2D prediction!

Full scale tests at CERN to start on June 20 (now!). CWRF 2016 Grenoble - Jensen: High Efficiency Klystrons 21-June-2016

Closing remarks

- At an age of 60 years, the klystron seems to be learning new tricks.
- An efficiency of well in excess of 80% seems in reach.
- A prototype 40-beam MBK allowed to validate the approach. An old tube ($\eta = 42\%$) was refurbished, implementing the new methods, and reached 66% with 52 kV.
- This is a very exciting development with huge potential!

Thank you for your interest and attention!