Development of a cavity-type power combiner for 509 MHz solid state amplifiers

June 21, 2016, CWRF 2016 in Grenoble, France

T. Inagaki, Y. Otake (RIKEN SPring-8 Center)
T. Sakurai, H. Ego (JASRI/SPring-8)
K. Hayashi, A. Terada, K. Harumatsu, S. Miyagawa, and
Y. Yamamoto (Mitsubishi Electric TOKKI Systems Corporation)

Outline

- Introduction
- Concept and design
- Prototype combiner measurement
- Summary

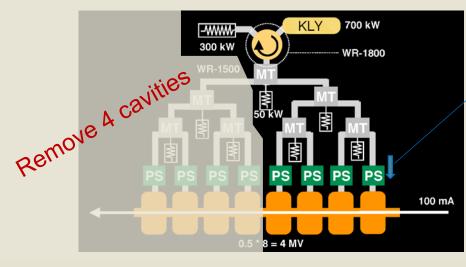
Three light sources in SPring-8 campus, Hyogo, Japan

SACLA (2011~) X-ray free electron laser 8 GeV normal conducting linac 3 HX & EUV beamlines

SPring-8 (1997~) World's largest light source 8 GeV storage ring 56 HX & SX beamlines

New SUBARU (1998~) 1.5 GeV storage ring 9 HX, SX & EUV beamlines 4 RF stations 8 accelerator cavities 1.2 MW CW klystron

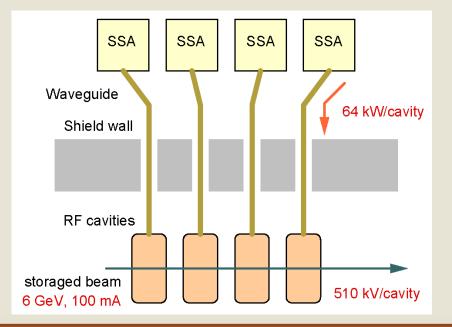
SPring.8


Toshiba E3732

SPring-8-II project (proposal, ~early 2020s)

- 20 enhanced X-ray brilliance
- Lower natural emittance
- Multi-bend lattice
- Lower electron beam energy
- Beam acceleration voltage
- RF cavity

SPring.


Cavity parameter	ers for SPring-8-II
Impedance	<u>6 ΜΩ</u>
Input power	64 kW
Cavity loss	32 kW
Beam loading	32 kW (100mA)
Acceleration vol	tage 440 kV
	/ lifier is practically power. (Motivation

Solid state amplifier option for future upgrade

- We designed the SSA for future replacement of the SPring-8-II RF source
- Target performance
 - Frequency 508.762 MHz
 - Output power: >110 kW
 - Power efficiency: > 60%

(RF frequency for Spring-8-II ring)
(99 kW in 3-station operation)
(klystron >60%)

- Power efficiency is one of the critical issues for SSA (typically 40~50%).
- LDMOS transistor itself; η_D>70%
 but.....
 - Cable loss
 - Combiner loss
 - Circulator loss,

Low loss

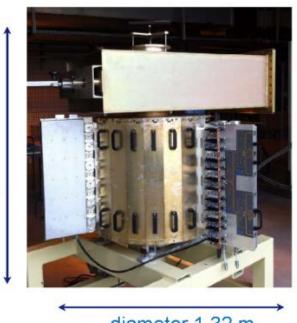
cavity-type

combiner

Example of the cavity combiner development

Presented by Michel Langlois, in CWRF 2014

height 1.37m


Page 5

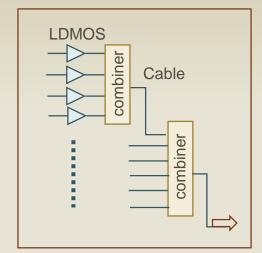
SPrins

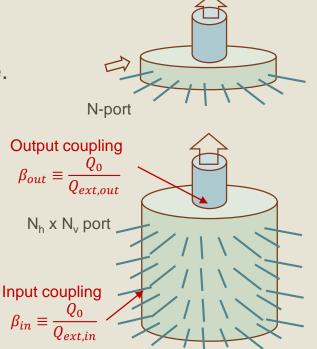
CLUSTER OF RESEARCH INFRASTRUCTURES FOR SYNERGIES IN PHYSICS

HOW SUCCESSFUL?

diameter 1.32 m

Footprint efficiency=54.8 kW/m2 Volume efficiency =40 kW/m3

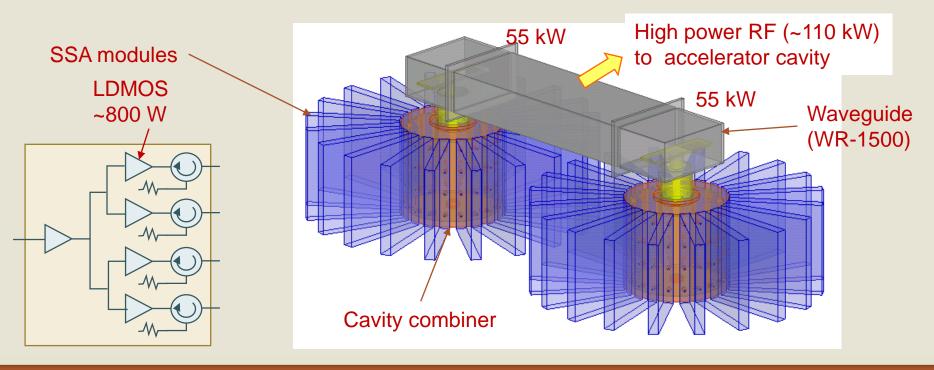

neight 2.7m


diameter 2.1m Footprint efficiency=21.6 kW/m2 Volume efficiency =8.02 kW/m3

Power combining scheme

- We have to combine the RF power of 100~200 LDMOS transistors to obtain 110 kW.
- Tournament type
 - Large insertion loss (many combiners & cables)
- <u>Radial combiner</u>
 - Number of port N is limited by the cavity size.
- <u>Cavity combiner</u>
 - Number of port $N' = N_h \times N_v$
 - Minimum cavity loss $\sim \frac{1}{N' \cdot \beta_{in}} = \frac{Q_{ext,in}}{N' \cdot Q_0}$ at $N' \cdot \beta_{in} = \beta_{out}$
- Large N' and Q₀ are preferable.

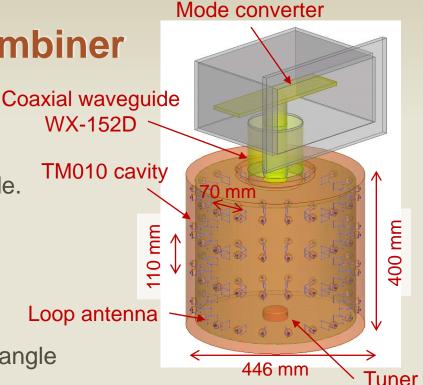
Outline

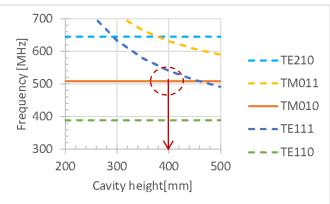

- Introduction
- Concept and design
- Prototype combiner measurement
- Summary

Concept of our solid state amplifier

• SSA module (20 modules x 2 units)

- 4 LDMOS, circulators, and pre-amp. are on the heat sink.
- Modular design, for maintainability and productivity.
- <u>Cavity combiner</u>
 - Efficiently combining RF power from 20 SSA modules




Concept of our cavity combiner

<u>TM010 cavity</u>

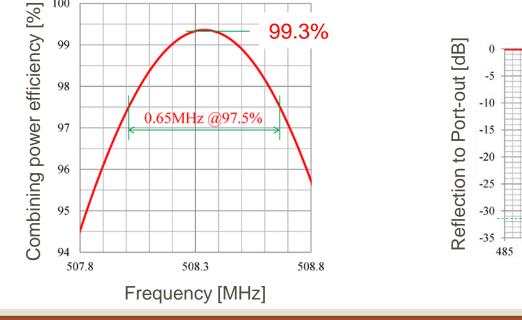
- Axially symmetric (uniform) EM field
- Height is selected to separate TE mode.
- Frequency tuner at the bottom
- Input port
 - 80 loop antennas (4 x 20)
 - Coupling is adjusted by loop size and angle
- Output port
 - Electrical coupling to coaxial waveguide
 - Coupling is adjusted by the inner conductor
- Waveguide mode converter
 - T-type mode converter

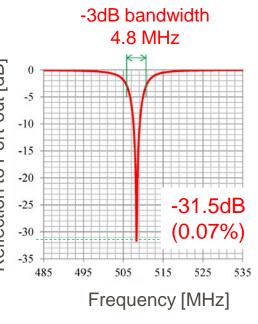
Cavity combiner, design parameters

	Design	
Frequency (f)	508.762 MHz	
Cavity diameter	446 mm	
Cavity height	400 mm	
Unloaded Q (Q_0)	46,600	95% of ideal copper cavity
Number of input N	80	
Input coupling β_{in}	2.9	Loop antenna, 18 x 18 mm
Output coupling β_{out}	233	Coax. Waveguide, WX-152D
Loaded Q (Q_L)	100	$(=Q_0/(1+N\cdot\beta_{in}+\beta_{out}))$
-3dB band width (Δf_{3dB})	5.1 MHz	$(=f/Q_L)$
Combining efficiency (η)	99.6%	$(\sim 1 - 1/\beta_{out})$
Assumed maximum ope	eration $P_{in} = 80$	$00 W, P_{out} = 64 kW$
Cavity loss (P_{cav})	270 W	$(\sim P_{out}/\beta_{out})$
Stored energy	3.9 mJ	$(\sim P_{cav} \cdot Q_0 / \omega)$
∩ ⊴ •_8		

T. Inagaki, CWRF 2016, Grenoble, France

SPri


HFSS simulation results

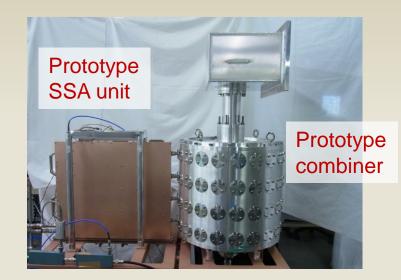

- We obtained design performance
 - Combining efficiency > 99%
 - Power reflection < 0.1%

100

Frequency range ~ 0.65 MHz (>97.5%) •

port1, port2,... .. port80

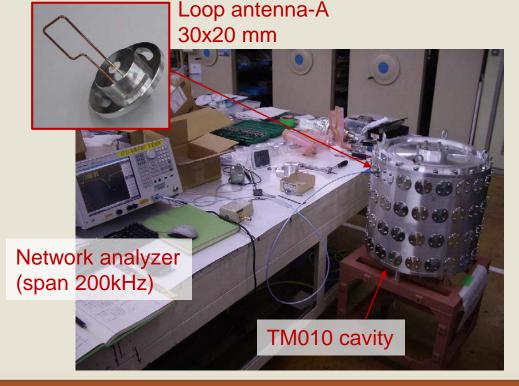
Outline

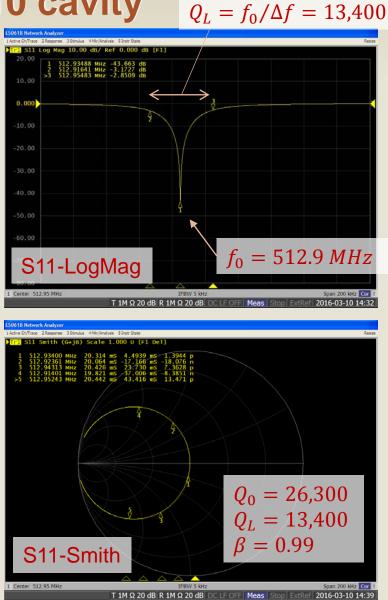

- Introduction
- Concept and design
- Prototype combiner measurement
- Summary

Prototype combiner test

Practically confirm and demonstrate

- TM010 cavity properties
- Adjust frequency and coupling
- Combining RF power of SSA unit
 Today
- High power performance and cooling




	Real combiner	Prototype com	biner		
Cavity material	Copper	Aluminum (AL5052)			
Unloaded Q (Q_0)	46,600	27,600 (95% of ideal cavity)			
Output coax.	WX-152D	WX-77D (for lo	wer coup	ling)	
Input antenna	80	80	4	For com	bining
Input coupling (β_{in})	2.9	1.7	4.8	test with	SSA
Output coupling (β_{out})	233	136	19		
Power efficiency	>99%	99%	95%		
-3dB band width (Δf_{3dB})	5.1 MHz	5.1 MHz	0.7 MH	z	

1) Measurement of the TM010 cavity

- Measure the reflection from the cavity.
 - Resonant frequency (f_0)
 - Q-factor (Q_0, Q_L)
 - Coupling (β_{in}) of the loop antenna

 $\Delta f = 38 \, kHz$

Measured cavity parameters

- Measured Q₀ is 90% of the ideal cavity.
- After machining 80 holes
 - Frequency shift ~ 300 kHz
- After machining of the cylinder diameter
 - $\Delta f / \Delta D = 1.1 MHz/mm$
- ✓ Confirm TM010 resonance and high Q₀, well agreed with the simulation.

Diameter

440.9 mm

440.9 mm

447.2 mm

455 mm

f_o [MHz]

520.391

520.078

512.935

504.733

 Q_0

26,300

25,500

26,300

29,200

After machining 80 holes

Q.

13,400

13,400

13,400

diameter

Loop antenna-A

1 hole

80 holes

80 holes

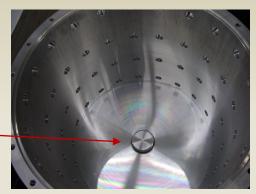
Simulation

Ideal AL cavity

Coupling hole

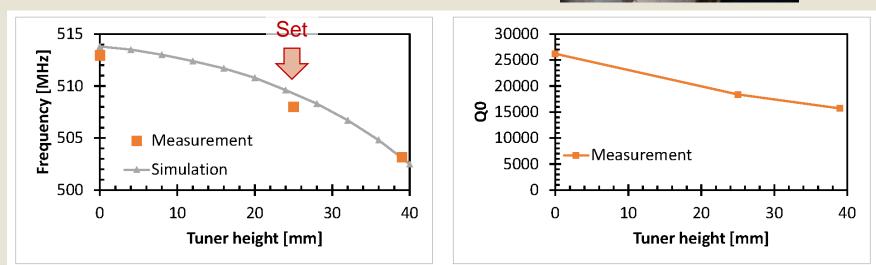
June 21, 2016

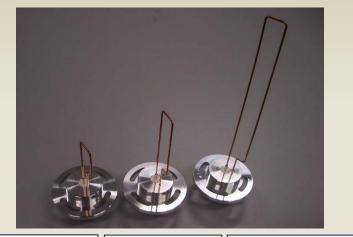
16

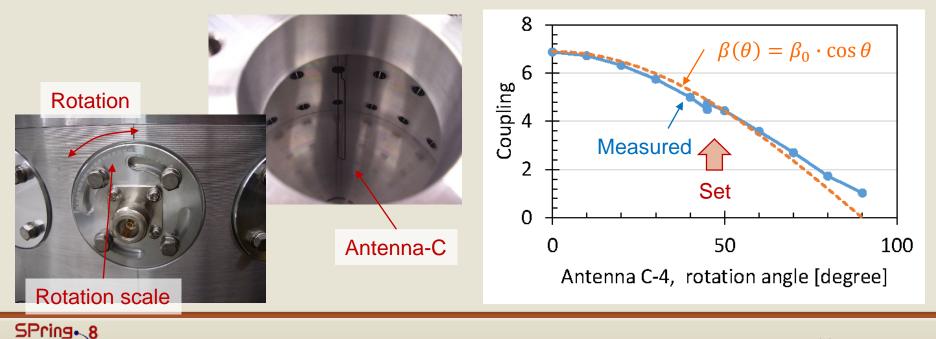

2) Frequency adjustment

✓ Enough tuning range of 503~513 MHz.

 But insertion of the tuner decreases Q₀ (-40%) and distorts the TM010 field.

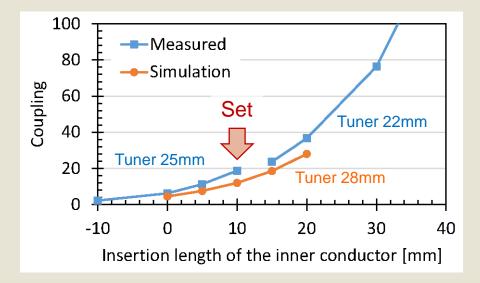

✓ When we make actual combiner, narrower tuning range and lower tuner height is better.

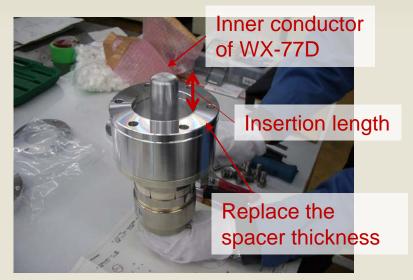

Screw 0-40mm

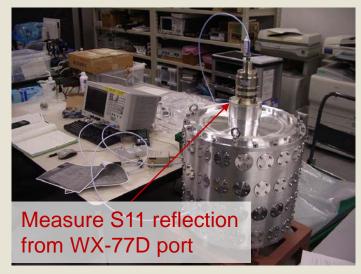

SPring

3) Input coupling adjustment

- Confirmed the coupling can be changed and proportional to $cos\theta$.
- We prepared 3 sizes of loops.
- For 4-port combining test, we use largest loop and set at $\theta = 45 \ deg$. and $\beta_{in} \sim 4.8$

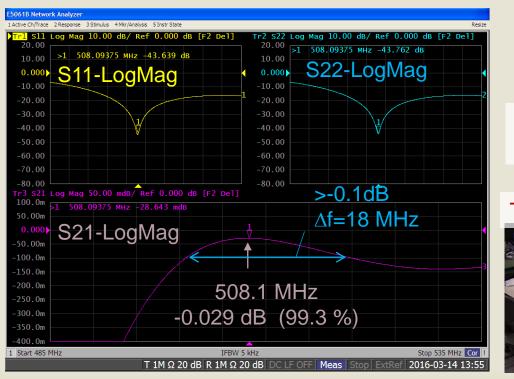


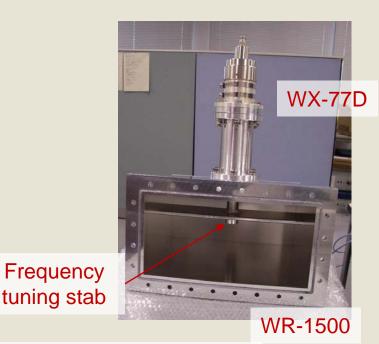

Antenna-A	Antenna-B	Antenna-C
30 x 20 mm	60 x 20 mm	140 x 20 mm
β_{in} ~1.0	$\beta_{in} \sim 1.5$	$\beta_{in} \sim 7$



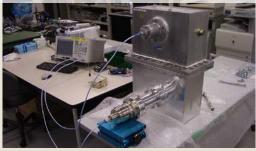
4) Output coupling adjustment

- Confirmed the coupling factor was adjusted by changing the insertion length of the inner conductor.
- For 4-port combining test
 - Insertion length: 10 mm
 - Coupling factor: $\beta_{out} = 19$

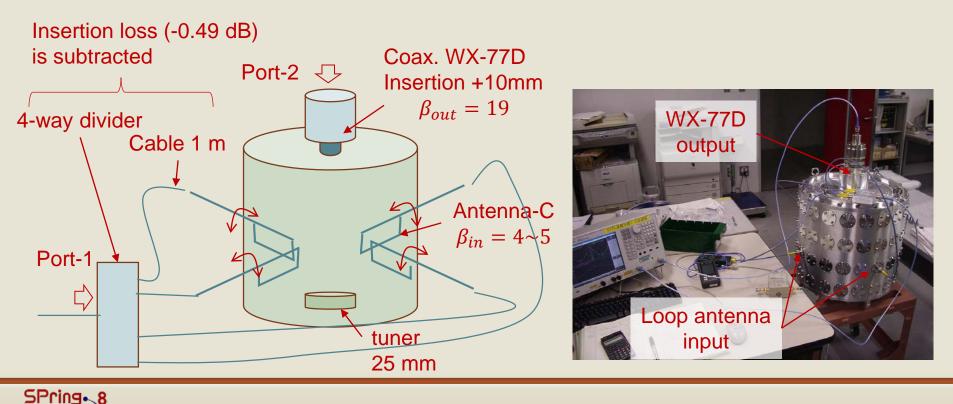




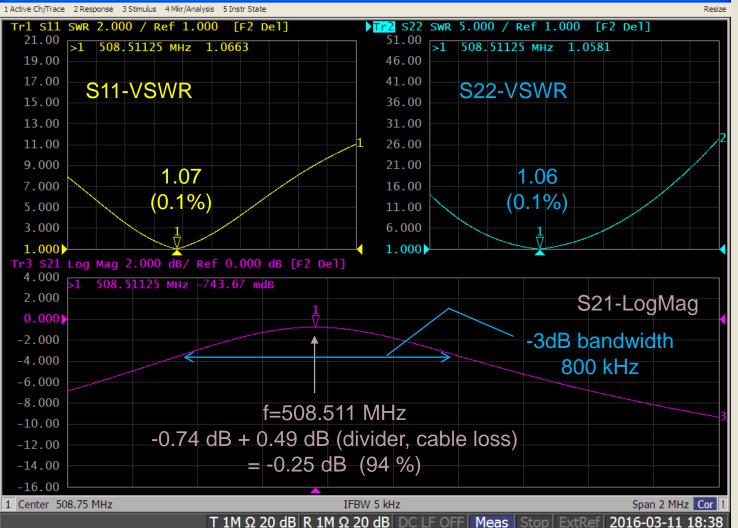
5) Transmission of the waveguide mode converter


Confirmed the RF power transmission.

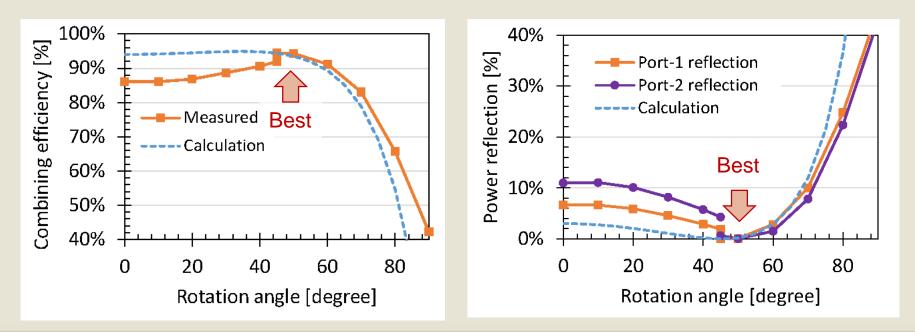
- Insertion loss ~ 0.7%
- Operation area ~18 MHz



Transmission measurement

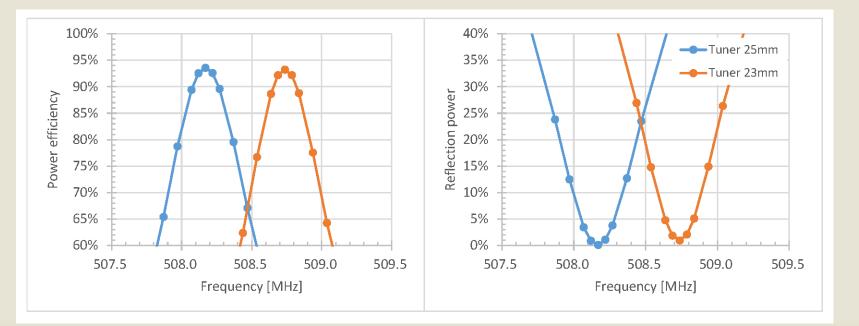

6) 4-port combining efficiency measurement

- Input port: 4 loop antennas
- Output port: coax. waveguide WX-77D
- Changed the rotation of the antenna and measured the transmission (S21) and reflection (S11, S22) characteristics using the network analyzer.


Result at optimum condition ($\theta = 50 \ deg$.)

E5061B Network Analyzer

Combining efficiency


✓ Obtained the power efficiency η = 94%
 which is consistent with the theoretical calculation: η = 95%
 ✓ Reflection power is also low enough (~0.1%).

7) Frequency range and adjustment

- Due to the narrow bandwidth, we should adjust the cavity frequency within ±50 kHz.
- ✓ We can easily adjust the frequency by the tuner.
- For actual 80-way combiner, 7 times wider than the present 4-way combiner

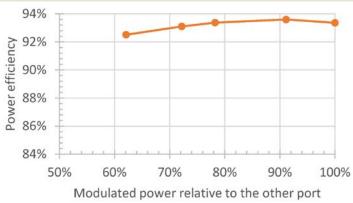
8) Effect of the unbalanced input

- Simulation of the unbalanced input from SSA.
- ✓ Insensitive to the power unbalance.

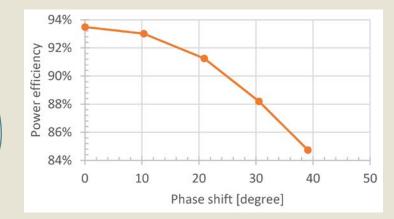
30% difference is acceptable

✓ Sensitive to the phase difference.

Should be adjusted within 10 deg.


Port-2

WX-77D


Antenna-C

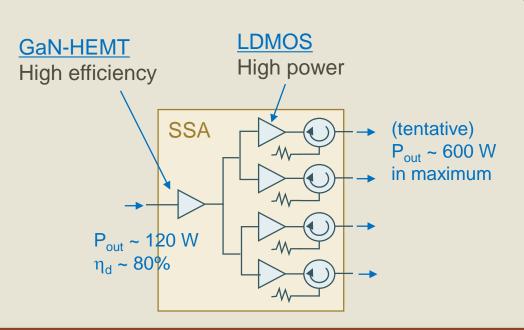
θ=50°

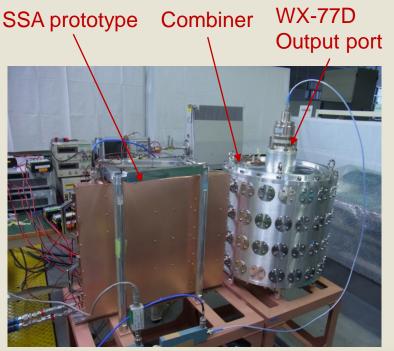
Power balance vs. efficiency

Phase shift vs. efficiency

Attenuator

or

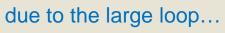

phase shifter


Port-1

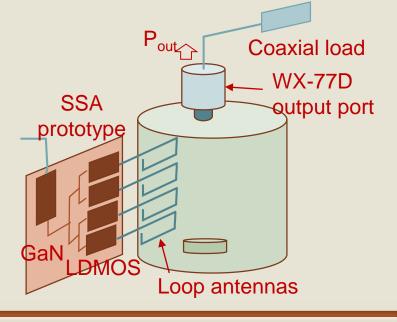
乙

9) Power combining test with SSA

- Demonstration of the actual power combining from SSA prototype.
- Low power test (today's report)
 - Output power: ~200 W, terminated by coaxial load.
- High power test (planned in the next month)
 - Output power: 2~3 kW, terminated by waveguide water load.



Results of the low power test (tentative)


✓ Obtained power combining efficiency $\eta = \frac{215W}{243W} = 89\%$

- Reason for worse efficiency than the network measurement (94%)...
 - Loop coupling mismatch (position dependence, cross coupling) ~2%
 - Frequency mismatch (50 kHz) ~1%
 - Phase mismatch (<10°)
 - Existence of harmonics and spurious.

will be checked next time

	Measured power	Total
SSA-1	58 W	
SSA-2	61 W	243 W
SSA-3	59 W	
SSA-4	65 W	
Combiner output (P _{out})	215 W	

Outline

- Introduction
- Concept and design
- Prototype combiner measurement
- Summary

Summary

- Power combining is the key issue for high power SSA.
- We designed TM010 cavity type combiner with more than 99% efficiency.
- We made a prototype and performed the low power measurement..
 - Cavity Q-factor: 90% of the ideal case.
 - Input/output coupling and resonant frequency can be tuned.
 - 4-port combining; power efficiency ~94% (theoretical 95%)
- We demonstrated combining of the RF power from the SSA module.
- Low power RF characteristics of the cavity combiner is experimentally confirmed.
- We plan to test with high power RF.

