

Solid State RF Amplifier Development at the Advanced Photon Source

D. Horan, D. Bromberek, A. Goel,

A. Nassiri, K. Suthar, G. Waldschmidt

June 23, 2016

Outline

9.77-MHz Driver Amplifier

- → Application, design requirements and process
- \rightarrow Construction
- → Performance

352-MHz Amplifier Development

- → Application, design requirements and process
- \rightarrow Construction
- → Performance

9.77MHz Design Requirements

- Replacement for original 20-year old obsolete driver amplifiers in accumulator ring rf system
 - → supplies rf drive to groundedgrid triode output stage
- 9.77MHz operating frequency
- Output 50-500 watts cw
- Use Freescale MRFE6VP61K25 part
- RF gain 25dB minimum
- Forced-air cooling
- Fit into existing enclosures

ORIGINAL DRIVER AMPLIFIER

TRIODE POWER AMPLIFIERS

Design Process

- <u>Circuit simulation tools not useful</u> accurate model not available for transistor at 9.77MHz
- Design was "cut-and-try" process, with measurements along the way
- Started with simple circuit, then made modifications necessary to achieve desired stability, gain, and efficiency
- Two prototype units were built: air-cooled and water cooled
- Separate output harmonic filter was designed and tested –
 with interesting results

Basic Circuit

 Basic push-pull circuit utilizing ferrite-loaded transformers on input (4:1) and output (9:1)

 Modifications added to reduce gain, improve input return loss, and peak efficiency

.022µF

+30-50v

1000pF

Temperature-controlled bias regulator utilized

First Prototype Construction and Initial Testing

- #61 ferrite cores used in both transformers
- Vd = 45v
- Vg = 2.46v/Idq = 200mA
- RF in = 117mW gain over 30dB!
- 136 watts rf output
- Input return loss only 5.65dB
- Numerous spurious rf signals seen in output

First Prototype Construction and Initial Testing

 "Snubber" networks needed between gates and ground to reduce gain at lower frequencies

• Added 100Ω swamping resistor between gates

- Oscillation and resulting spurs are gone
- Input return loss now 17-19dB depending on rf drive level

Output Transformer -- Ferrites and Compensation

- Impedance measurements made using a spare board with a 12.5Ω resistance across primary winding
- Parallel capacitor across primary winding to optimize impedance seen by transistor:

PARALLEL CAPACITOR	SECONDARY IMPEDANCE		
NONE	112 + j27		
1,000pF	74 – j29		
1,470pF	62 – j30		
1,690pF	53.2 – j31		

 Little difference seen between #31 and #43 ferrites

Optimization of Output Transformer Compensation

- Output transformer cores switched to #43 material
- Full-power efficiency measured for different compensation capacitor values
- Drain voltage = 50V

COMPENSATION CAPACITOR	RF INPUT POWER	RF OUTPUT POWER	GAIN	DRAIN CURRENT	EFFICIENCY
820 pF	1.84 watts	1,050 watts	27.56 dB	31.16 A	68.6%
1,000 pF	1.85 watts	1,130 watts	27.85 dB	31.09 A	73.9%
1,100 pF	1.98 watts	1,170 watts	27.71 dB	31.42 A	75.8%

Harmonics and Bandwidth

- Unfiltered harmonic amplitudes are quite high because of transformer coupling – filtering required
- Broad bandwidth reasonable performance out to ≈ 15MHz

30-Volt Operation

- Thermal performance test:
 - → 30 minutes continuous operation at saturation
- Forced-air cooling of heatsink

RF INPUT POWER	RF OUTPUT POWER	GAIN	DRAIN CURRENT	EFFICIENCY	TRANSISTOR FLANGE TEMP
0.538 watts	422 watts	28.9 dB	18.42 A	75.56%	34.1° C

CWRF 2016 June 21-24, 2016 ---- Grenoble, France

9.77MHz Output Harmonic Filter

-- Five-Element 50Ω Low Pass Chebyshev

 30-volt operation with harmonic filter increases efficiency:

RF INPUT POWER	RF OUTPUT POWER	GAIN	DRAIN CURRENT	EFFICIENCY
1.28 watts	411 watts	25.06 dB	15.62 A	87.7%

System Test

 First prototype tested in accumulator ring rf system under beam conditions:

No problems noted

Final Version – *Added Features*

- Thermal tracking bias regulator
- Fan for output transformer
- Central 24-volt power for bias regulator and fans
- Shielded enclosure

9.77MHz Driver Amplifier -- Summary

- Four units will be built and tested
- Two units will be installed in rf systems in 2016-2017

352-MHz Solid State Amplifier Development

- <u>Ultimate goal</u>: Design and build a 352-MHz/200kW rf system that could be used for both the storage ring and booster
 - → Achieve 2kW output per LDMOS device to minimize system complexity
 - → Utilize a resonant cavity output combiner to reduce complexity and enhance efficiency

<u>Initial R&D goal</u>: Build a 12kW cw demonstration amplifier utilizing six 2kW amplifier modules driving a combining cavity:

- 2kW cw output per module
- Module efficiency > 65%
- Single push-pull package
- Operate device at 60V
- Use Freescale (now NXP) MRFE6VP61KH25 device

352-MHz/2kW Amplifier Design --

Cooling System

- Conventional copper cold plate + carrier construction used for prototype amplifiers
- Thermal model developed and verified

Source/Load Impedance from Simulation

- Source and load pull simulations provided the answer, but:
 - If starting impedance guesses are not correct, search space is the entire smith chart.
 - Large search space leads to model convergence errors
 - Iterative and time consuming
 - Prone to errors

A better approach:

- Use simultaneous Load and Source impedance optimization with specified goals of output power and efficiency.
- Both ADS and MWO have simulation components that can do this

Matching Network: Balun

- Start with the balun and decide upon a practical length if using a coax balun
- 25 ohm coax used as balun on input and output:
 - Provides a complex 1:2 transformation ratio for real part in unbalanced mode
 - Practical length considerations prevented use of quarter wavelength

Matching Network Design

- Start with a lumped element LC matching network
- Take the conjugate of the complex impedance value obtained from the impedance optimization
- Convert results from an unbalanced simulation to balanced mode
- Bias filtering network included when designing the matching network
- Design the LC match such that inductors are confined to the series section and there is at least one series capacitor (for DC blocking)
- Replace the inductors with equivalent transmission lines
- Use the widest possible trace width for the input and output as this maximizes current carrying capability and makes soldering much easier

Version 1

- Test at 60 volts
- Design based <u>entirely</u> on simulation results
- Input section match worked very well: needed to move only 1 capacitor a few cm
- Input return loss was -16dB.
- DC simulation results matched well
- Did not produce any power amplification -output match problems!
- Model errors are the most likely cause:
 - Model only validated at 50V operation
 - Model de-embedding at high power is difficult and error prone
 - Parameters used to develop high power models are taken under pulsed conditions
- Version 1 used to measure device DC dissipation and validate thermal models

Modified Version 1

- Since input match was good no changes were made to input
- Modified drain circuit traces with copper tape to increase width
- Restricted components to all-metal mica caps to ensure thermal reliability
- After several days of tuning, stable pulsed operation achieved: 2.18kW, 10% duty cycle, 500Hz rep rate, Vd = 60 volts
- Used a mix of trend analysis and simulation to optimize component values
- Destroyed one transistor in the process!

Version 2

Power and Efficiency at Vd = 60 volts

- Applied lessons learned from Version 1: Design new board with wider drain traces, and single break in trace for DC blocking
- No changes were made to input side
- After tuning: 1.86kW cw with 71.6% efficiency, 18dB gain
- Very stable and continuous operation for 2Hrs with no signs of thermal runaway or drift
- Harmonics are well controlled: at least -47dBC
- Further tune up has yielded 1-2% additional efficiency -- but no additional rf power

<u>Version 2</u> - Drain Voltage Control

- The amplifier was operated at different drain voltages to characterize performance
- At least 70% efficiency is achievable over a wide output range by varying drain voltage

<u>Version 2</u> - Drain Voltage Control

- Only 7.6 degrees of phase change from 30V to 60V change in drain voltage
- 1.27% Change in Efficiency for the same range
- Change in output power is very linear

Version 2 - Thermal

86.7 89.3 +

INFRARED SCAN OF BOARD AFTER FIFTEEN MINUTES OF OPERATION AT ≈ 1.7Kw

INFRARED SCAN OF 2kW RF LOAD

- Electro-thermal equilibrium reached after ten minutes of operation
- Transistor flange temperature reached 98°C, below the manufacturer recommended maximum of 150°C
- Passive components need better cooling

Version 2 - Replication

- Identical electrical design was replicated with slight modifications to the cold plate and carrier
- 1.76kW produced at first turn on -- no tuning needed
- All performance parameters closely matched the first prototype
- Hand made components (balun and bias filter inductors) may be the cause of performance variations

Thermal Challenges

- Operation at 60 volts and 2kW rf power will require enhanced cooling to prevent premature failure of transistor and passive components
- Several cooling strategies are being considered:
 - → Conventional copper cold plate + copper carrier:

→ Conventional copper cold plate + heat spreader:

→ Conventional copper cold plate + vapor chamber:

<u>Tests are underway to determine the most practical solution</u>

500-WATT CERAMIC HEATER AND SPREADER BLOCK TO SIMULATE TRANSISTOR THERMAL FOOTPRINT

EUCLID ALUMINUM HEAT SPREADER

Euclid TechLabs LLC -- Dr. Chunguang Jing,

Vice President for Engineering

COPPER CARRIER

RTD MEASUREMENT LOCATIONS

500-WATT HEATER WITH INTERNAL THERMOCOUPLE AND MOUNTING BLOCK

THERMAL GREASE JOINTS

- Multiple tests run on both units results very repeatable
- Heater voltage steps of 50, 100, 110, & 115VAC at 15-minute intervals
- Tests limited by thermal grease maximum temp (~200°C) and heater rated voltage
- Copper carrier outperformed Euclid heat spreader due to placement of water channels directly under heat source rather than around perimeter

ANSYS SIMULATION RESULTS OF HEATER BLOCK TEST CONFIGURATION

Output Cavity Combiner Design -- G. Waldschmidt

- Design for 100 kW minimum
- 108 input ports for solid state amplifier modules – 1.5kW per amplifier nominal
- Eighteen individual 6-port panels, utilizing rf spring contacts
- Heavily over-coupled output coupler to reduce cavity losses
- Peak fields minimized for high gradient operation
- Single WR2300 full height waveguide output feed

CWRF 2016 June 21-24, 2016 ---- Grenoble, France

-- Thermal and Electrical Simulations at 100kW -- G. Waldschmidt

- Peak fields (output coupler and tuner) are less than 0.5 MV/m
- T-bar geometry facilitates conductive and convective cooling
- Water cooling of output coupler with conductive cooling of waveguide is planned
- Top and bottom plate will be water cooled
- Tuner cooling is conductive through contact springs
- Remaining geometry is air cooled

THERMAL PROFILE WITH 100kW INPUT POWER

WATER COOLING: T-BAR OUTPUT COUPLER, TOP AND BOTTOM PLATE

FORCED AIR COOLING: CAVITY AND BELLOWS

-- 6-Port / 12kW Prototype — G. Waldschmidt

- 12kW prototype is based on full cavity combiner design, with one 6-port panel populated with input connectors and coupling loops
- Six 2kW amplifiers will be used
- Cavity built from aluminum with silver plating
- Output coupler bellows is adjustable to accommodate additional amplifiers
- Tuner has ± 3MHz tuning range
- Input couplers are tunable with a sliding cross member fitted with fingerstock rf contacts

Adjustable input coupling

-- Waveguide Transition Tuning - G. Waldschmidt

- T-bar waveguide transition designed as matching element for waveguide
- Permits internal cooling of output coupler and facilitates higher power handling

Algorithm for sequential input coupler tuning of prototype cavity algorithm:

$$\Gamma_m \coloneqq \frac{-(m-2)-N}{m+N}$$

Critically matched response:

$$\Gamma \coloneqq \frac{1-N}{N}$$

$$\Gamma \coloneqq \frac{1-N}{N} \qquad \beta \coloneqq \frac{1}{2 \cdot N - 1}$$

-- Other-Order Modes - G. Waldschmidt

- Input couplers couple to other cavity modes that are within amplifier bandwidth
- Multiple input couplers may tend to cancel fields due to opposite circulation of magnetic flux
- Field non-uniformity is compensated at 352 MHz, but not at other modes so cancellation is not complete
- Bandpass filter is being considered

FREQUENCY RESPONSE AT OUTPUT COUPLER

FREQUENCY RESPONSE AT INPUT COUPLERS

Output Cavity Combiner Design-- CAD Figures

Nanobonding – K. Suthar

-- An Alternative to Soldering?

- Nanobonding: High-temperature exothermic reaction between nickel and aluminum in foil, triggered by electron flow
- Tin coating on foil melts during the reaction and bonds mating surfaces
- Exploring as an alternative to soldering for transistor package and circuit board

NANOBONDING OF TIN-COATED COPPER SLABS

NANO FOIL:

NANOBONDING OF SIC TO COPPER SLAB

Nanobonding -- K. Suthar

-- An Alternative to Soldering?

Exploring as an alternative to soldering for transistor package and circuit board:

Thermal and electrical compatibility tests underway

352-MHz Solid State -- Summary

 12kW demonstration system will be assembled and tested in 2017

 Performance data will be used to implement design changes necessary to increase reliable output power to 100+ kW

And now.....

Notable Failures!

RF1 Matching Transformer Fire

-- December 20, 2015

- 2.5MVA transformer steps down 13.2kV to 1,400 volts for thyristors in HVPS
- End-of-life insulation failure resulted in sustained arcing that progressed into a major fire
- Transformer and enclosure destroyed
- Replaced transformer with spare on hand, but had to emergency-order new enclosure
- Total repair time ≈ five weeks

Output Window Arcing on Thales TH2089A Klystron

- Damage detected during visual inspection at maintenance shutdown: Burned screw seen on output transition
- Further investigation revealed arcing damage to output center conductor
- Repair will be attempted

