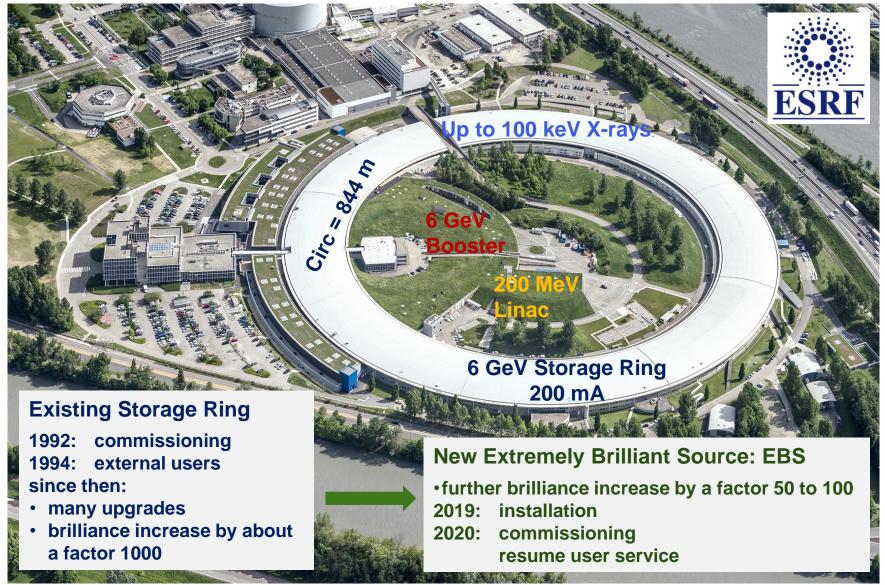
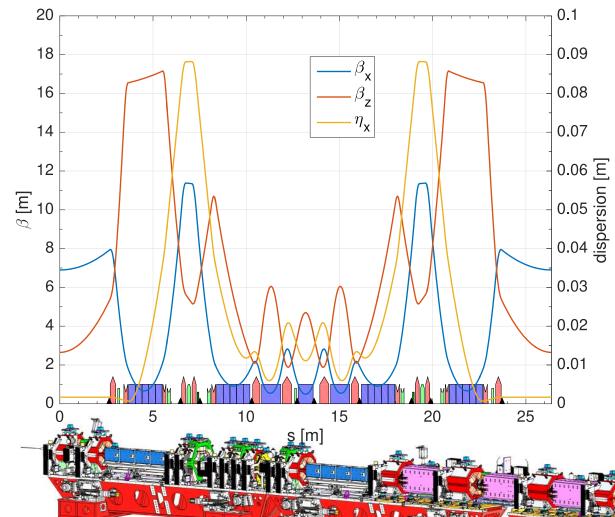

9th CWRF ESRF/ Grenoble, 20th – 24th June 2016

RF System Upgrade for the New Extremely Brilliant Light Source at the ESRF, Operation Experience with Klystrons and Solid State Amplifiers

J. Jacob, J.-M. Mercier, V. Serrière, M. Langlois, G. Gautier, A. D'Elia



The European Synchrotron



ESRF: FIRST 3RD GENERATION SYNCHROTRON LIGHT SOURCE

ESRF-EBS: EXTREMELY BRILLIANT SOURCE

Main features:

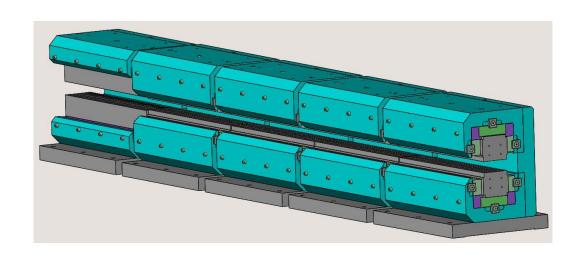
- 2 regions with large dispersion for efficient chromaticity correction
- Rough sextupole compensation by having a ≈π phase advance between the 2 sections

0.05 Performance:

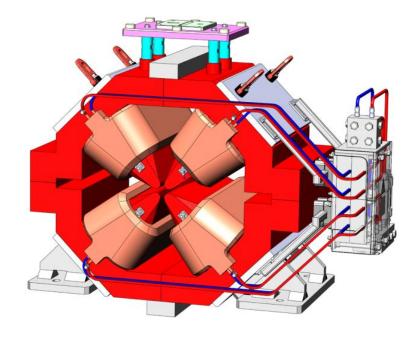
Natural equilibrium emittance:

$$\varepsilon_{x0} = 134 \text{ pm}$$

Emittances with 5 pm coupled into the vertical plane and 0.5 MV radiation losses from ID's:


$$\varepsilon_x = 107 \, pm$$

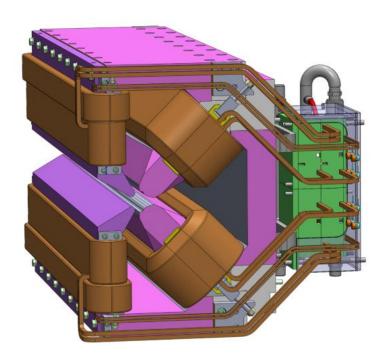
$$\varepsilon_z = 5 pm$$

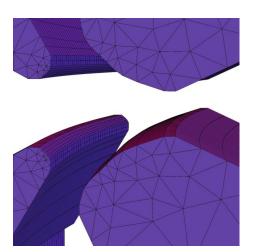


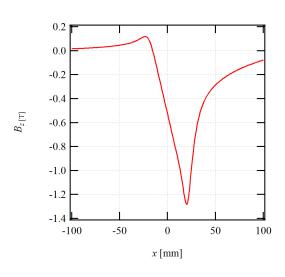
ESRF-EBS MAGNETS

DL 0.17 → 0.67 T permanent magnets, 5 modules

Quadrupole 91 T/m, Ø25.4 mm




[Courtesy: Gael Le Bec]



ESRF-EBS MAGNETS

DQ 0.55 T, 37 T/m

[Courtesy: Gael Le Bec]

MAIN MACHINE PARAMETERS

		Existing ESRF	ESRF-EBS
Same energy, current and filling patterns	E, Ibeam	6 GeV, 200 mA	6 GeV, 200 mA
Emittance	ε_{x} / ε_{z}	4000 pm / 5 pm	≈ 110 pm / 5 pm
Energy loss (incl. 0.5 MeV for ID's)	U	5.4 MeV/turn	3.1 MeV/turn
Same ID position $\Rightarrow \Delta f_{rf} = + 170 \text{ kHz}$	f _{rf}	352.20 MHz	352.37 MHz
Longitudinal damping time	$\tau_{_{ m S}}$	3.5 ms	8.6 ms
Momentum compaction factor	α	17.8 10 ⁻⁵	8.4 10 ⁻⁵
Energy spread	σ _E /E	1.06 10 ⁻³	0.948 10 ⁻³
Nominal RF voltage	V _{acc}	8 MV (max 12 MV)	6 MV (max 6.6 MV)
⇒ RF Energy acceptance (incl. ID's)	ΔΕ/Ε	2.9 %	4.9 %
Synchrotron frequency	f _s	1.86 kHz	1.22 kHz
I _{threshold} for HOM driven instabilities (LCBI) [for a given HOM]	ratio	1.9 to 1 ⇒ HOM damped cavities MANDATORY EBS	
Number of cavities	N_{cav}	$5 \\ \text{(five-cell cav's} \Rightarrow 25 \text{ cells)}$	13 to 14 (mono-cells, HOM free)
Cavity Coupling	β	4.4	3
Total RF power at 200 mA	P _{tot-200mA}	≈ 1400 kW	≈ 1000 kW

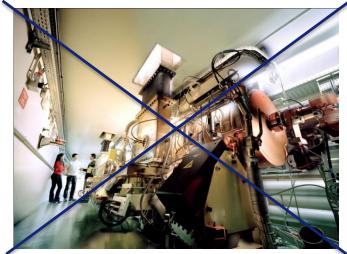
RF DESIGN ELEMENTS FOR ESRF-EBS

Total energy loss including ID radiation: 3.1 MeV/turn

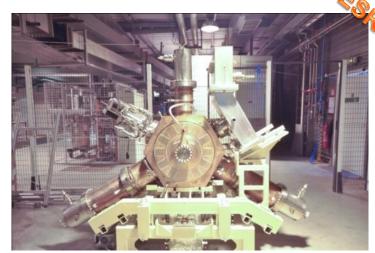
Maximum RF Voltage: 6.6 MV

RF transmission losses: 15 %

including RF losses, spurious mismatches


Stored current with operational margin: 220 mA

RF frequency: 352.371 MHz


15 HOM damped cavities:

3 prototypes validated for 0.6 MV / 150 kW

12 cavities in fabrication

5-cell cavities: strong HOM!

HOM damped mono-cell cavities developed at ESRF, based on BESSY/ALBA design


RE-USE OF EXISTING RF POWER SOURCES FOR ESRF-EBS

3 x 150 kW SSAs feeding prototype cavities in existing storage ring: re-used for EBS

85 kW SSA with cavity combiner, developed at ESRF [M. Langlois' talk]

2 of 3 existing klystron transmitters: re-used for **EBS**

REMINDER: 2009-2013 RF UPGRADE

Replacement of Booster Klystron by: 4 X 150 kW SSAs from ELTA / AREVA:

- In operation since March 2012
- 1 common 280 V dc / 400 kW power supply
- 3.2 F anti-flicker & smoothing capacitor banks:
 - ⇒ Wall plug power: 400 kW instead of 1.2MW

Klys2 Klys1 150 kW 150 kW pulsed SY Cav 1 & 2 150 kW 150 kW

Cell 5

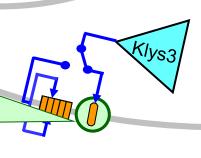
Cav 1 & 2

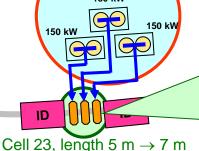
3 X 150 kW SSA from ELTA

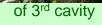
Teststand

Cell 7

Cav 3 & 4

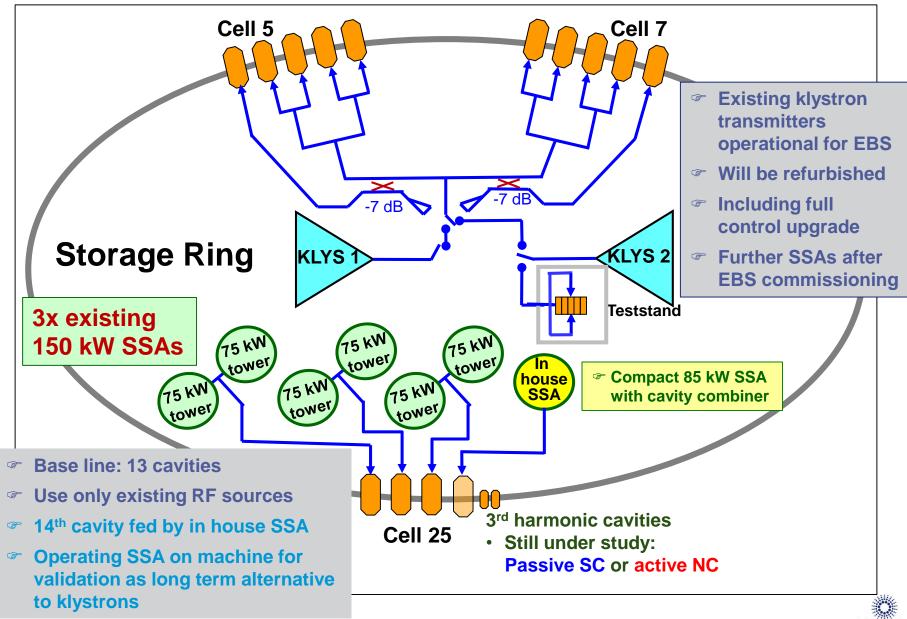

Powering 3 new HOM damped cavities on the storage ring

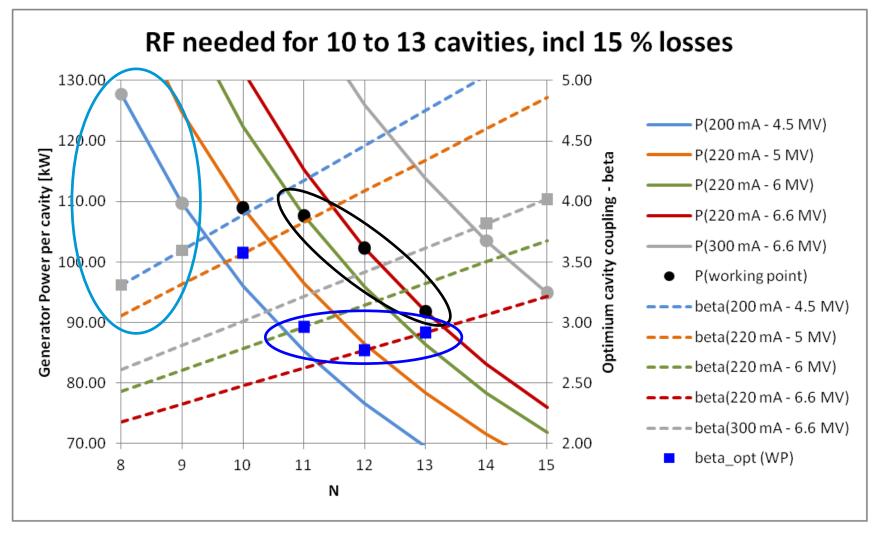

Storage Ring


Booste

prototype HOM damped cavities ...

2 cavities tested with beam in 2011-2013 on cell 25 with klystron transmitter TRA3





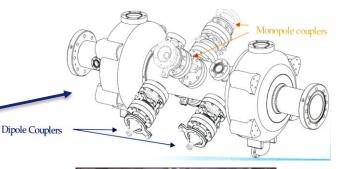
1 cavity developed a leak and was removed in 2014

UPGRADE FOR ESRF-EBS IN 2019

RF POWER REQUIREMENTS

- Even with 5 cavities in fault (1 complete cell) @ operation at 4.5 MV / 200 mA still possible
- Also room left for performance upgrade

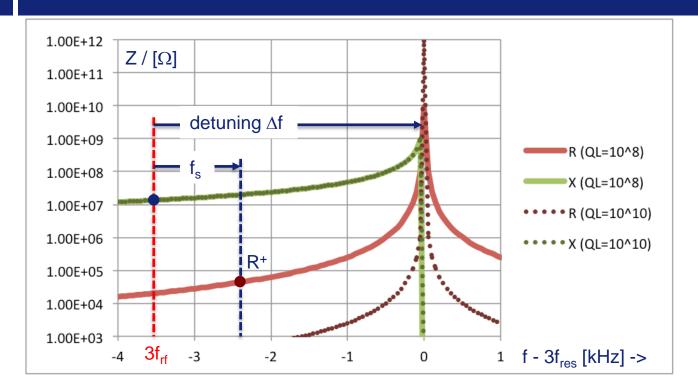
LIFETIME IN THE NEW MACHINE

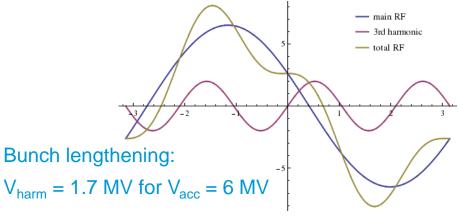

New lattice: same operation modes as existing machine:

	Multibunch	16-bunches	4-bunches
Total current	200 mA	90 mA	4 x 10 mA
Nb. Bunches	868	16	4
Bunch length	23 ps	64 ps	77 ps
Lifetime for $\varepsilon_{\text{vert}} = 5 \text{ pm}$	19 h	1.8 h	1.2 h

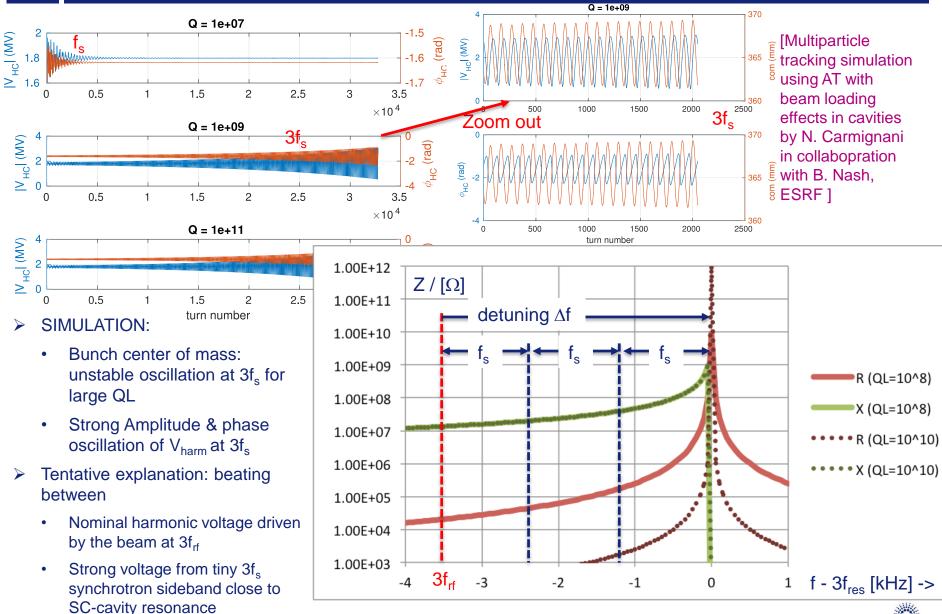
Implementation of 3rd harmonic cavities at 1057.1 MHz for bunch lengthening and increased Touschek lifetime under study.

Alternatives:


- Passive SC cavity, Super3HC type like at Elettra or SLS: collaboration with CEA / IRFU / SACM in Saclay, France
- Active NC cavities: scaling of ESRF HOM damped accelerating cavity



OPERATION OF PASSIVE SC HARMONIC CAVITY



- ➤ Strong detuning ∆f of Super3HC like cavity:
 - Zcav \approx jX, with X >> R, X \neq f(QL)
 - Δf such that: 2 $I_{beam} X = V_{harm}$
 - $\Delta f \approx 3.5 \text{ kHz for } I_{\text{beam}} = 70 \text{ mA}$
- ➤ Smaller I_{beam} → larger X → smaller Δf → larger R⁺
 => Problem of AC Robinson instability for I_{beam} < 70 mA!

 (off resonance, Φ_{harm} follows rigid bunch motion at $f_s \neq 0$)

EXAMPLE OF AC ROBINSON INSTABILITY ON 3RD SYNCHROTRON SATELLITE

BOOSTER RF ALREADY UPGRADED

Initially since 1991:

- 1 klystron powered 2 five-cell cavities
- via 2 couplers/cavity
- 600 kW in total
- Total V_{acc} up to 8 MV

April 2012 upgrade:

- 4 x 150 kW SSAs powered 2 cavities
- Reminder: SSA → technology transfer from SOLEIL to ELTA / AREVA

January 2016 upgrade:

- 4 x 150 kW SSAs feed 4 cavities
- 1 SSA/cavity via 1 coupler/cavity
- Total V_{acc} uo to 11 MV
- Redundancy: 8 MV operation with 3 systems (i.e. if one cavity or one SSA fails)

Ready for safe frequent top up operation started in 16 bunch in April 2016

OPERATION EXPERIENCE WITH 7 X 150 KW SSA

- Booster → 4 SSA 150 kW each. In operation since January 2012 (4500 hours)
 - > Top-up since April 2016
- $SR \rightarrow 3 \times SSA 150 \text{ kW each.}$ In operation since October 2013 (17400 hours)
 - > One is out of operation because of cavity failure
- So far no transistor failure (BLF578 from NXP, now produced by AMPLEON)
- Nominal Power Efficiency 58% Gain 63.3 dB No variation in time (last control March 2016)

Component	Event count	Disturb Operation	Comment
HPA 650W (filter)	SR 10 SY 9	No No	CMS filters stressed when soldering on the PCB. Youth problem, now fixed with time. Last failure: April 27 2015.
DC/DC Converter 280V/50V	SR 4 SY 3	No No	Fuse blown. OK after replacing the fuse
Pre-Driver	SR 0 SY 5	Yes 1	Conception problems, which have been fixed: Gain loss, bad soldering, bad logic circuitry
MUXBOX Control Interface	SR 3 SY 4	Yes 2 No	The SSA trips when the fuse blows because the relays for cooling interlocks are fed by this interface. This is a weakness of the system, which can be improved.
Water Cooling	SR 1 SY 2	No Yes 1	Fortunately it happened outside of machine operation
TOTAL	SR 18 SY 23	2 2	1 in 2014 + 1 in 2015 → Beam loss 2 in 2012 → Refill postponed

KLYSTRON TRANSMITTERS

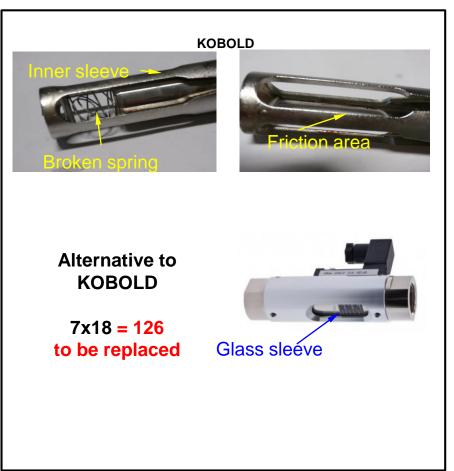
- STORAGE RING 3 RF stations with 1.1 MW and 1.3 MW klystrons
 - RF station #1 feeding 4 five-cell cavities
 - RF station #2 as backup for #1 or for RF Power Test Stand
 - RF station #3 feeding 1 five-cell cavity (formerly 2 cavities)
- Stations #1 and #2 in operation since 1991, station #3 since 1997
- Stations #1 and #2: control refurbished year 2000 following the standard of station #3
- Obsolescence of VME / linux computers comprising measurement and digital I/O boards
 - ⇒ New control is under refurbishment using PCI and independent measurements and digital I/O
- Klystron EEV2-2 dead at 21770 hours in October 2015
- Station #3 will be dismantled end of 2018 for new ESRF-EBS machine

AVAILABLE KLYSTRONS - STATUS MARCH 2016

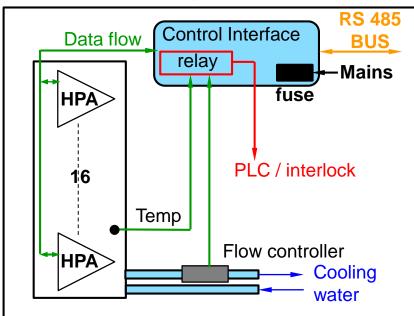
RF Station	Klystron Id	HV time	Average/year	
#1	EEV4	65,087	6,100	
#2	EEV1	34,121	5,000 (next 2 years: extensive cavity conditioning)	
#3	PHILIPS	22,775	4,500	
	EEV3	8,374	Potential time of 110,000	
Spare Klystrons	TH89022-2	18,428	hours for pessimistic klystron lifetime expectation of 40,000 hours per tube: → corresponds to 11 years of operation (9 years after EBS upgrade)	
	TH89018-2	36,340		
	EEV5	10,631		

KLYSTRON VERSUS SSA FAILURES

	Klystrons + ancillaries*		SSA	
Year	Beam losses	% of total RF failures	Beam losses	% of total RF failures
2012	2	8%	0	0%
2013	3	14%	0	0%
2014	3	9%	1	3%
2015	1	4%	1	4%


^{*} Modulating Anode PS, Focusing PS, Filament PS, IP

WHAT COULD BE IMPROVED ON 150 KW SSA


Interlocked cooling water flow controllers:

- 1 Kobold flow controller per cooling plate, supporting 16 HPA of 650 W or drivers
- 18 cooling plates per SSA

Erosion issue

Design issue

When the Control Interface fuse is blown the SSA is tripped only because the flow and temperature interlocks are conditioned by this interface (relay).

Interlock should be processes independently.

