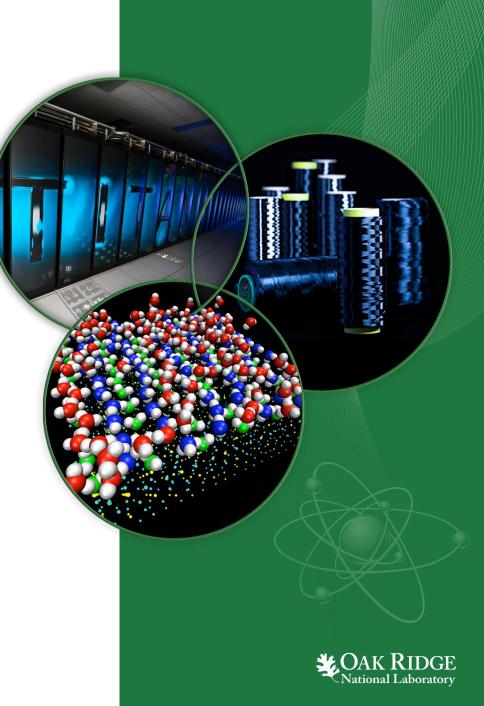
Upgrades to the SNS RF Systems to Support the Second Target Station


Presented to the

Ninth Continuous Wave and High Average Power RF Workshop

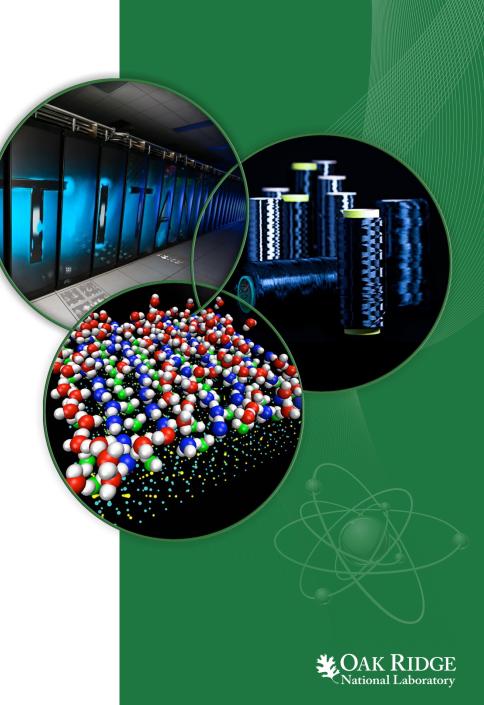
Grenoble, France Thursday, June 23, 2016

Mark E. Middendorf

ORNL is managed by UT-Battelle for the US Department of Energy

Upgrades to the SNS RF Systems to Support the Second Target Station

Presented to the


Ninth Continuous Wave and High Average Power RF Workshop

Grenoble, France Thursday, June 23, 2016

Mark E. Middendorf

(a.k.a. "Swims with Sharks")

ORNL is managed by UT-Battelle for the US Department of Energy

Introduction

- Proton Power Upgrade
 - Timeline
 - Parameters
 - Scope
 - Transmitters
 - LLRF
 - HVCM
 - Challenges
 - Schedule
- Summary

Acknowledgements

- A.V. Aleksandrov
- D.E. Anderson
- H.J. Bullman
- M.P. Cardinal
- M.S. Champion
- M.T. Crofford
- D.E. Curry
- G.W. Durland
- J.J. Fazekas
- J.D. Galambos
- D.A. Heidenreich

- M.P. Howell
- Y.W. Kang
- S.H. Kim
- J.S. Kristy
- S.W. Lee
- J.S. Moss
- S.N. Murray
- T.R. Pennisi
- J.P. Price
- F.S. Proffitt
- R.T. Roseberry

- R.B. Saethre
- J.P Schubert
- C.C. Smith
- D.J. Solley
- C.M. Stone
- W.H. Strong
- B.M. Thibadeau
- R.F. Welton
- M.W. Wezensky
- D.C. Williams

Introduction

	Design	Routine Operation
Kinetic Energy (GeV)	1.0	0.957
Beam Power (MW)	1.4	0.8-1.4
Energy per pulse (kJ)	23	13 - 23
Target Material	Hg	Hg
Repetition Rate (Hz)	60	60
RF Duty Factor (%)	8	7
Linac pulse length (msec)	1.0	0.975
Peak Linac Current (mA)	38	36
Average Linac Chopping Factor)%)	32	22
SRF Cavities	81	79-80

1.0 GeV

SCL $\beta = 0.81$

12 Cryomdules

48 Cavities

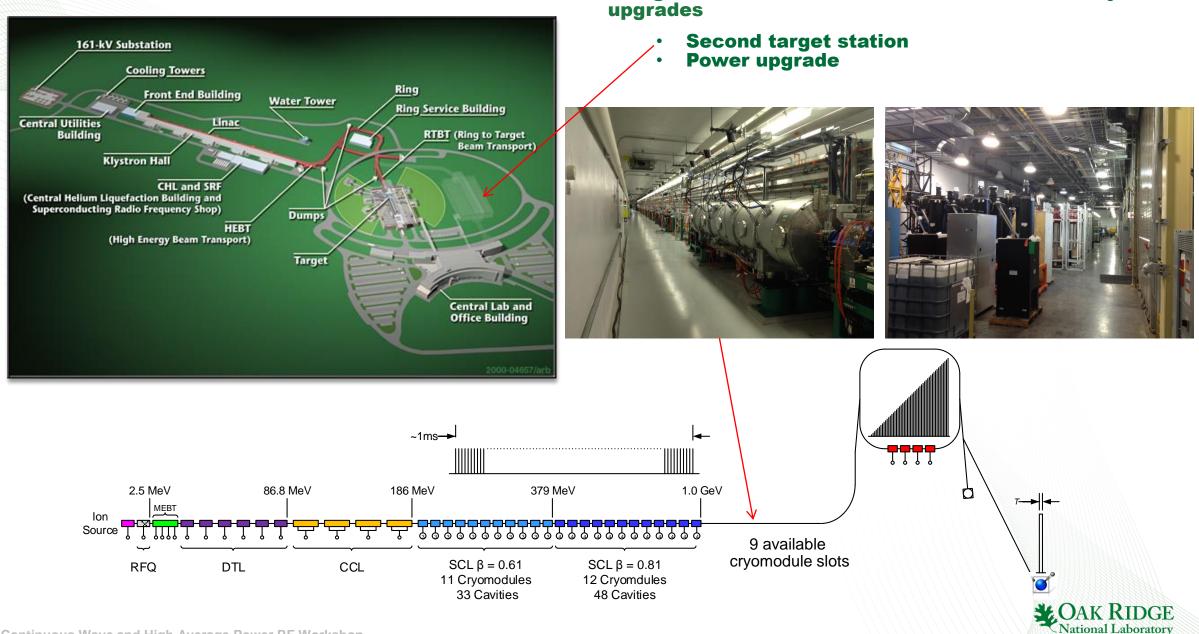
The SNS accelerator complex provides the world's highest beam power on target accelerator-based neutron source ~1ms---2.5 MeV 379 MeV 86.8 MeV 186 MeV MEBT lon Source

CCL

SCL $\beta = 0.61$

11 Cryomodules

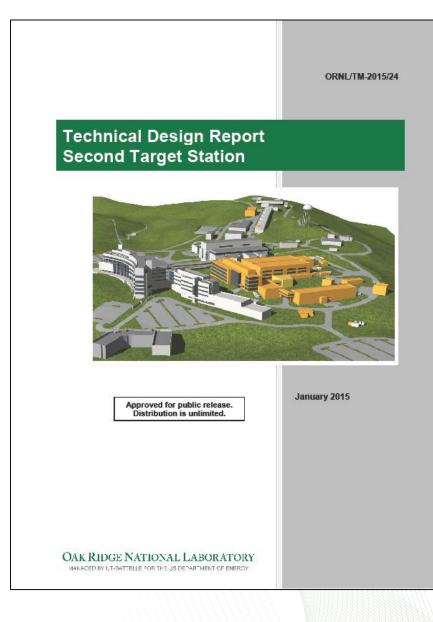
33 Cavities


ŢŢŢŢ D OAK RIDGE National Laboratory

Ninth Continuous Wave and High Average Power RF Workshop

DTL

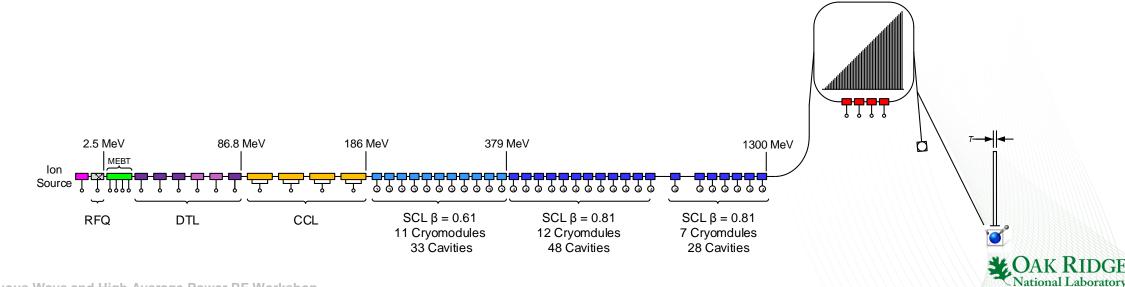
RFQ


Introduction

Designed from the outset to accomodate two major

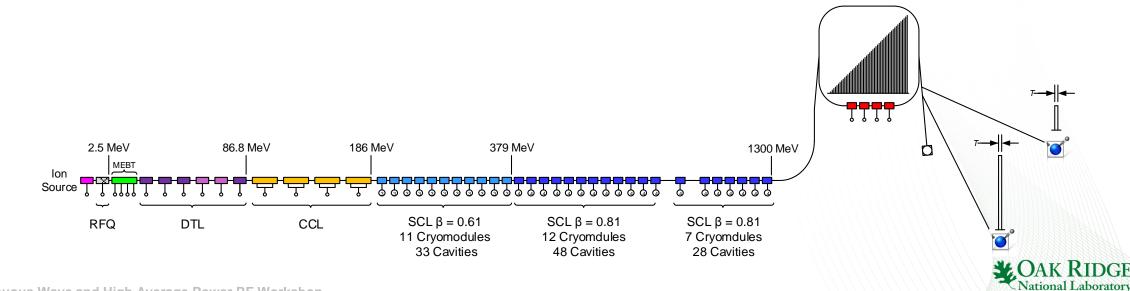
Proton Power Upgrade - Timeline

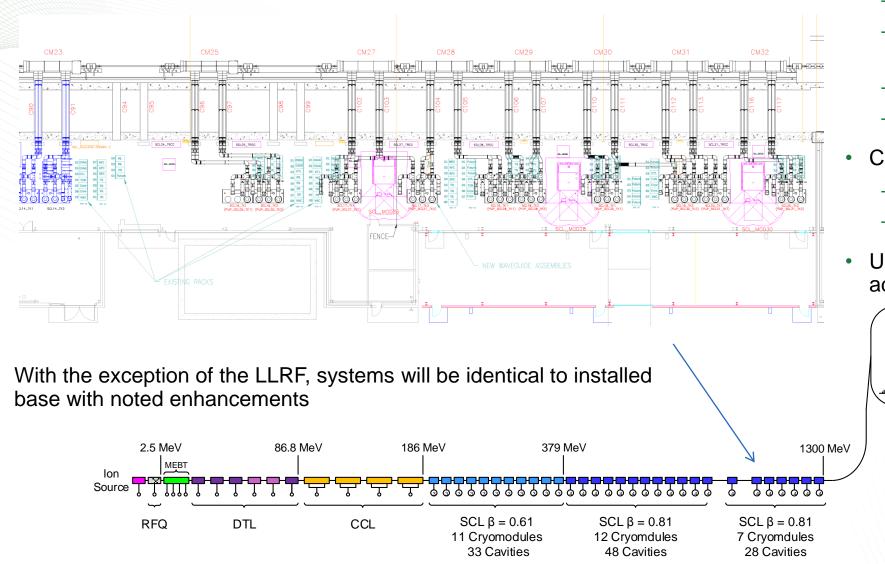
- 2004 CD-0 approved for power upgrade (energy only)
- 2009 CD-0 approved for STS
- 2011 Indefinite postponement
- 2013 Started pre-conceptual design effort for STS (included power upgrade)
- 2015 Published Technical Design Report
- 2016 PPU was split out



Proton Power Upgrade - Parameters

- Upgrades the SNS accelerator to provide 2MW beam power on target
 - Upgrades target to handle 2MW
 - Increases energy and current


	Design	Routine Operation	PPU
Kinetic Energy (GeV)	1.0	0.957	1.3
Beam Power (MW)	1.4	0.8-1.40	2
Energy per pulse (kJ)	23	13 - 23	33
Target Material	Hg	Hg	Hg
Repetition Rate (Hz)	60	60	60
RF Duty Factor (%)	8	7	7
Linac pulse length (msec)	1.0	0.975	0.975
Peak Linac Current (mA)	38	36	46
Average Linac Chopping Factor)%)	32	22	22
SRF Cavities	81	79-80	109


Proton Power Upgrade - Parameters

- Upgrades the SNS accelerator to provide 2MW beam power on target
 - Upgrades target to handle 2MW
 - Increases energy and current
- Installs all HPRF required for Second Target Station

	Routine Operation	PPU	FTS	STS
Kinetic Energy (GeV)	0.957	1.3	1.3	1.3
Beam Power (MW)	0.8-1.40	2	2	0.47
Energy per pulse (kJ)	13 - 23	33	40	47
Target Material	Hg	Hg	Hg	Tungsten
Repetition Rate (Hz)	60	60	50	10
RF Duty Factor (%)	7	7	7	7
Linac pulse length (msec)	0.975	0.975	0.975	0.975
Peak Linac Current (mA)	36	46	46	46
Average Linac Chopping Factor(%)	22	22	33	18
SRF Cavities	79-80	109	109	109

Proton Power Upgrade - Scope

- 28 high-β cavities in 7 cryomodules
- 28 HPRF systems
 - 5 transmitters
- 28 LLRF systems
- 3 HVCMs
- Current upgrade

ŢŢŢ

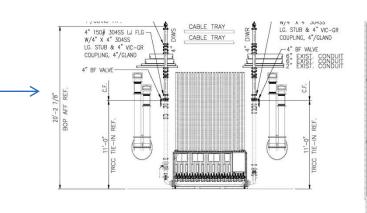
- Increasing peak current
- Reducing chopped beam fraction

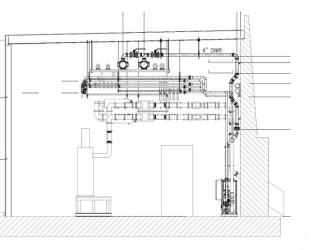
OAK RIDGE

Upgrade DTL klystrons due to additional beam loading

 \square

Proton Power Upgrade - Transmitters


Transmitters


- CPI VKP-8291B, 700kW klystrons
- Single magnet power supplies
- Internal chassis temperature measurement
- RHV fiber optic fan-out
- Compact cooling cart
 - Ultrasonic flow transducers
- Waveguide support structure

Proton Power Upgrade - LLRF

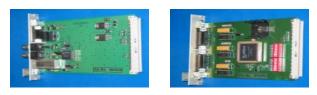
- The current LLRF systems for the Linac is obsolete.
- There are adequate spares of the Linac LLRF systems to support PPU but the current system cannot meet Second Target Station (STS) requirements.
 - No support for more than one style of beam loading
 - No pulse-to-pulse AFF correction
 - Current system is bus bandwidth limited to 20 Hz
- Utilizing the current Linac LLRF system for PPU is undesirable due to the requirement to replace it for STS.

Standard LLRF Configuration

- VXI based
- 2 LLRF systems per rack (IOC)

Proton Power Upgrade - LLRF

Replacement LLRF system developed on µTCA.4 platform


- Baseline plan currently under investigation
- Allows for use of commercial of the shelf (COTS) hardware where possible
 - lowers development effort
- Removes VXI backplane data throughput limitations to allow for full 60 Hz updates
 - current system limited to 20 Hz
- Controls Group is adopting µTCA platform for their next generation systems
 - ensures support in the future
- Considerable development work will be necessary

Proton Power Upgrade - LLRF

- The installed arc detector system will be reused
- RF reference line is in place and will reuse the current LO distribution scheme

AFT Arc Detector System

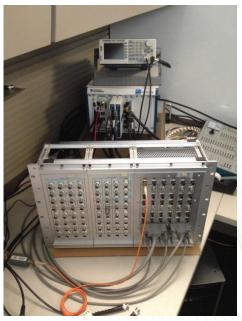
Reference Line in Tunnel

Master Oscillator Rack

Proton Power Upgrade - HVCM

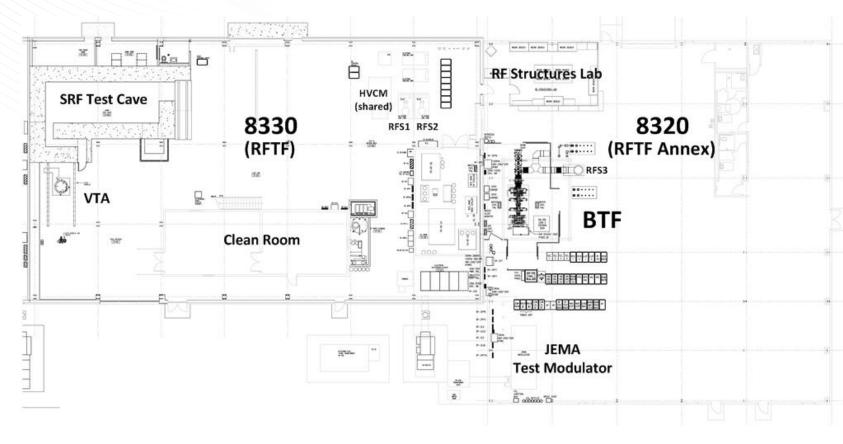
1.5MVA Transformer 13.8kV/2.1kV 3Φ High-Voltage Converter Modulator (Alternate Topology) SCR Cabinet

- To accommodate the modest power increase, an alternate modulator topology is under consideration
 - Outputs of the three interleaved full bridge converters are in placed in series, not parallel
 - Results in voltage reduction across secondary components
 - Boost capacitor across transformer secondary is eliminated
 - Eliminates a failure prone device
 - The IGBTs turn off losses are minimized
 - Topology is load tolerant; can supply one to ten klystrons with minimal output deviation



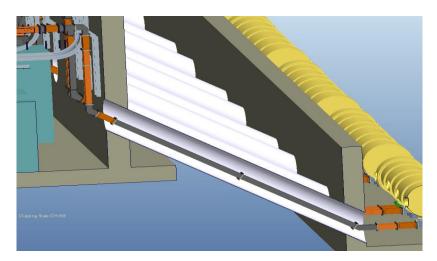
Proton Power Upgrade - HVCM

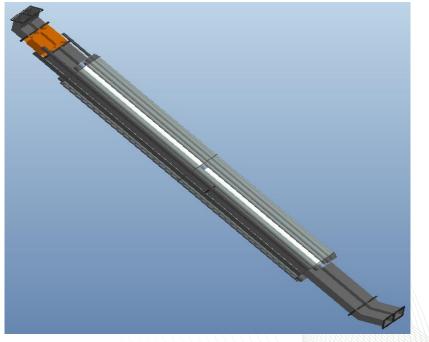
- Next Generation Controller
 - Replaces several pieces of obsolete and unreliable equipment
 - NI PXI platform with embedded controller using LabView
 - 32-channel synchronous high speed analog input channels
 - Provides synchronized full speed continuous monitoring and data capture
 - Multiple digital and low-speed analog channels to monitor and control IGBT gate drivers, interlocks and protection systems
- Provides new capabilities
 - Ability to perform pulse-flattening
 - Phase-shifted pulse width modulation
 - Frequency modulation
 - Flux compensation
 - First fault identification
 - Data logging including high speed waveforms
 - Faster troubleshooting

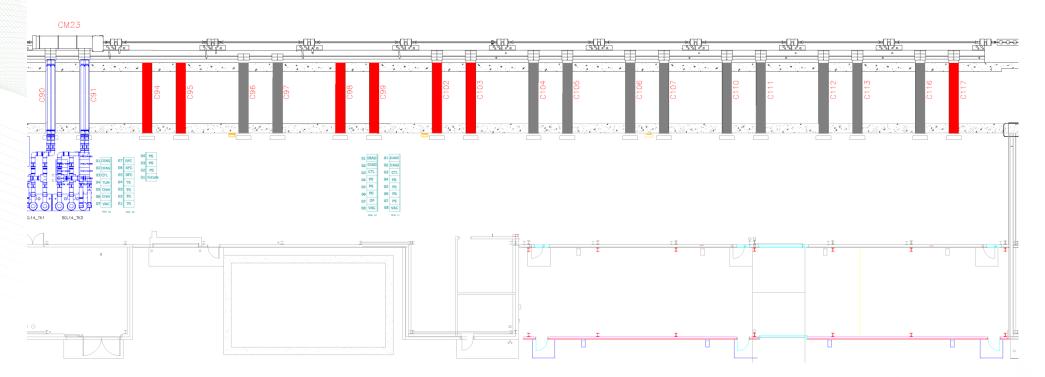


Next Generation Controller

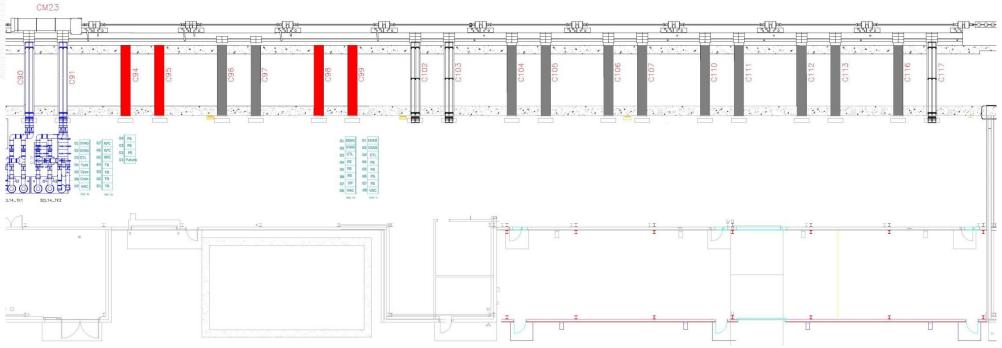
- Space
 - East end of klystron gallery currently used for storage and shop space
 - RF Annex is being re-designated a technical development space




- Solution?
 - Better use of existing spaces
 - Chestnut Ridge Maintenance Facility
 - RATS2
 - Mezzanines
 - Out source construction
 - Cryomodules
 - HVCMs
 - Rent temporary off-site technical space

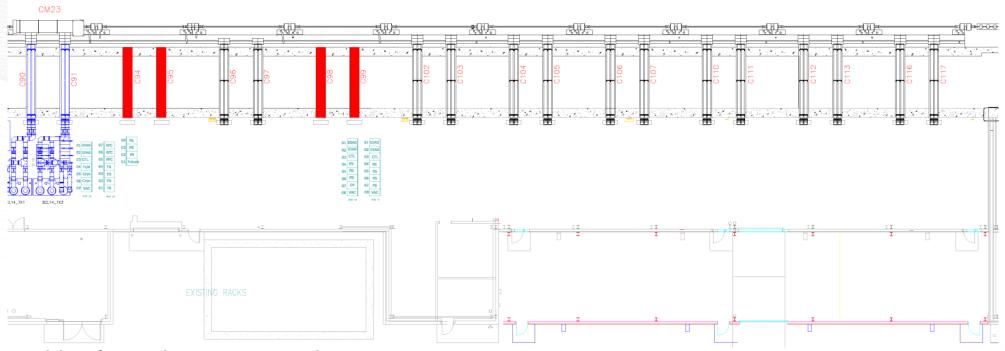

- The penetrations from the klystron gallery to the tunnel have in insert that integrates waveguide and conduit
- The inserts were originally installed before the klystron gallery building was constructed.

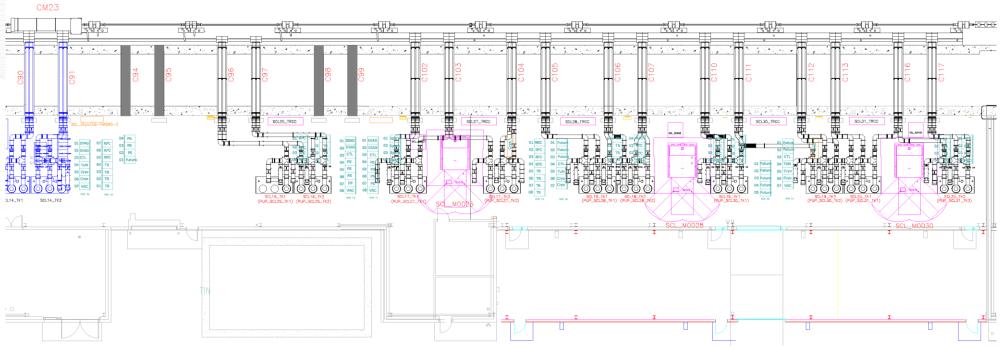
- During construction, the decision was made to reduce the size of the klystron gallery to save money
 - Klystron gallery ended around chase 103
 - Required cables for equipment downstream from CM23 were pulled through chases 94, 95, 98, 99, 102, 103, and 117
 - Equipment racks were installed in the klystron gallery blocking clear access to chase 94 and 99

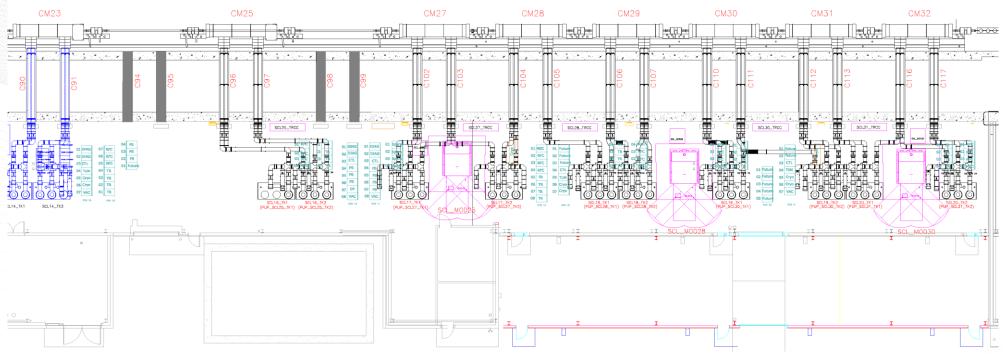


Chases with cables

Ninth Continuous Wave and High Average Power RF Workshop


- Clear cables from chases 102 and 103
- Re-cable, bringing cables up through chase 99
- Install chase inserts and backfill with poly beads


- Clear cables from chases 102 and 103
- Re-cable, bringing cables up through chase 99
- Install chase inserts and backfill with poly beads


- Clear cables from chases 102 and 103
- Re-cable, bringing cables up through chase 99
- Install chase inserts and backfill with poly beads
- Install remaining inserts and backfill with poly beads

- Clear cables from chases 102 and 103
- Re-cable, bringing cables up through chase 99
- Install chase inserts and backfill with poly beads
- Install remaining inserts and backfill with poly beads
- Install equipment in klystron gallery

- Clear cables from chases 102 and 103
- Re-cable, bringing cables up through chase 99
- Install chase inserts and backfill with poly beads
- Install remaining inserts and backfill with poly beads
- Install equipment in klystron gallery
- Install cryomodules

Proton Power Upgrade - Schedule

D	Task Name	Duration	Start		Predecessors	2017	2018	2019	2020	2021	2022	2023	2024	202
	CD-1 Approval	0 days	Sat 9/30/17				• 9/30							
	Approval of advance procurements	0 days	Sat 9/30/17				9/30							
3	Conventional Facilities	577 days	Sun 10/1/17					1						
9	Winter Outage 2018	31 days		Wed 1/31/18			•							
10	First project funding for advance procurer		Thu 2/1/18				♦ 2/1							
11	Summer Outage 2018	30 days		Tue 7/31/18										
	Linac Tunnel and Klystron Gallery	211 days	Mon 1/1/18	Mon 7/30/18										
21	SCL	457 days	Thu 11/1/18	Fri 1/31/20										
30	Winter Outage 2019	31 days	Tue 1/1/19	Thu 1/31/19										
31	Summer Outage 2019	31 days	Mon 7/1/19	Wed 7/31/19				•	l -					
32	CD-2/3 Approval	0 days	Mon 9/30/19	0 Mon 9/30/19					9/30					
33	Winter Outage 2020	31 days	Wed 1/1/20	Fri 1/31/20										
34	Rest of project funding available	0 days	Sat 2/1/20	Sat 2/1/20					♦ 2/1					
35	EAST GROUP	851 days	Sat 2/1/20	Tue 5/31/22							1			
52	Summer Outage 2020	31 days	Wed 7/1/20	Fri 7/31/20										
53	Install insulating vacuum section 8	31 days	Wed 7/1/20	Fri 7/31/20										
54	Winter Outage 2021	31 days		Sun 1/31/21										
55	Install insulating vacuum section 8	31 days		Sun 1/31/21										
56	Install insulating vacuum section 7	31 days	Fri 1/1/21	Sun 1/31/21										
57	Summer Outage 2021	62 days	Thu 7/1/21	Tue 8/31/21							•			
58	Cryomodule 32	31 days	Thu 7/1/21	Sat 7/31/21										
70	Cryomodule 31	31 days	Sun 8/1/21	Tue 8/31/21										
82	WEST GROUP	822 days	Fri 10/1/21	Sun 12/31/23										
100	Winter Outage 2022	31 days		Mon 1/31/22										
101	Install insulating vacuum section 7	31 days		Mon 1/31/22										
102	Summer Outage 2022	62 days		Wed 8/31/22								•		
103	Cryomodule 30	31 days		Sun 7/31/22										
115	Cryomodule 29	31 days	•••	Wed 8/31/22										
127	Winter Outage 2023	90 days	Sun 1/1/23											
128	Cryomodule 28	31 days		Tue 1/31/23										
140	Cryomodule 27	31 days	Wed 2/1/23											
152	Cryomodule 25	31 days	Wed 3/1/23											
164	CD-4 early finish	0 days		3 Sun 12/31/23									12/31	
	Winter Outage 2024	30 days		Tue 1/30/24										
	CD-4 late finish	0 days		Mon 9/30/24										9/30

- 2004 CD-0 approved for power upgrade (energy only)
- 2009 CD-0 approved for STS
- 2011 Indefinite postponement
- 2013 Started pre-conceptual design effort for STS (included power upgrade)
- 2015 Published Technical Design Report
- 2016 PPU was split out
- 2017 Publish Conceptual Design Report
- 2017 CD-1 Approval
- 2018 CD 2/3 Funding for advanced procurements
- 2018 Conventional facilities complete
- 2023 Klystron gallery installation complete
- 2023 Last cryomodule installed
- 2023 CD-4 Early project finish
- STA? 2MW beam on target

Merci beaucoup de votre attention!

Ninth Continuous Wave and High Average Power RF Workshop