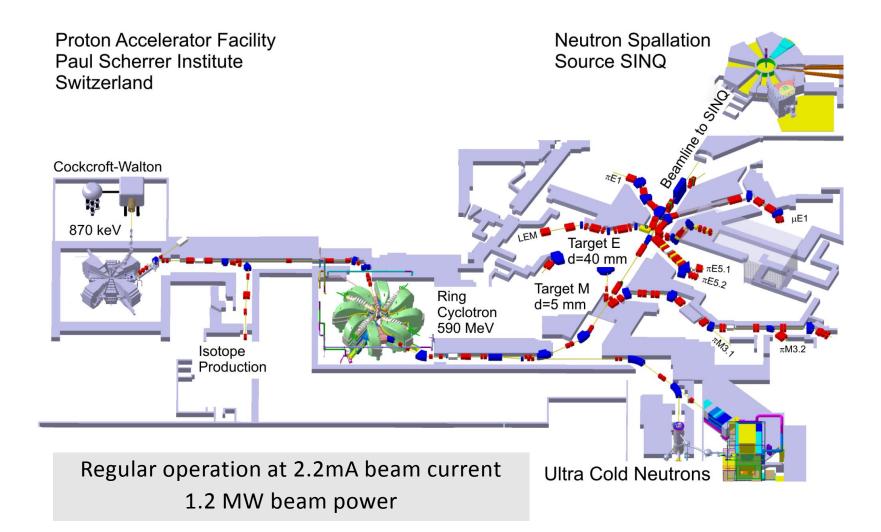
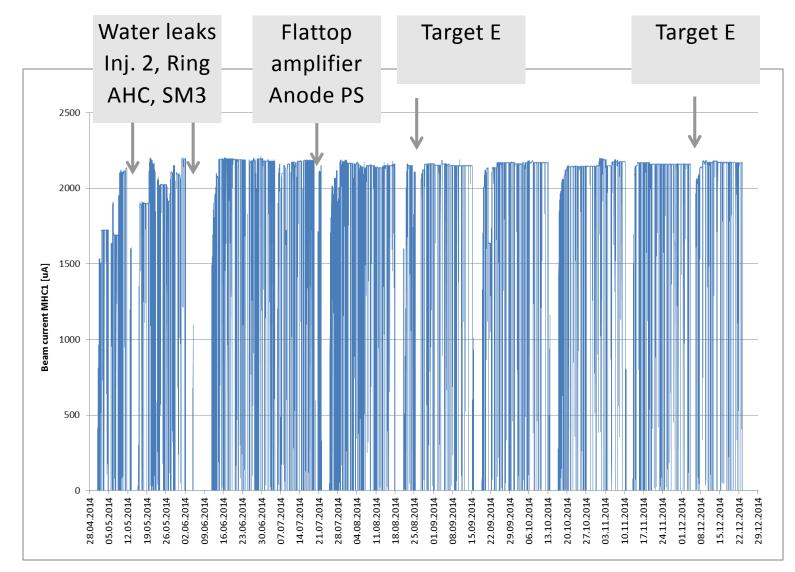
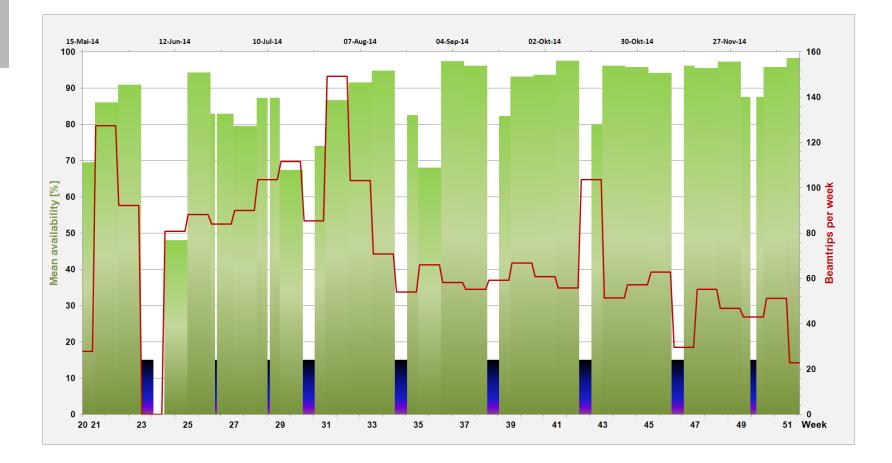
PAUL SCHERRER INSTITUT

Markus Schneider :: RF Group :: Paul Scherrer Institut


Status of the High Intensity Cyclotron RF-System at PSI

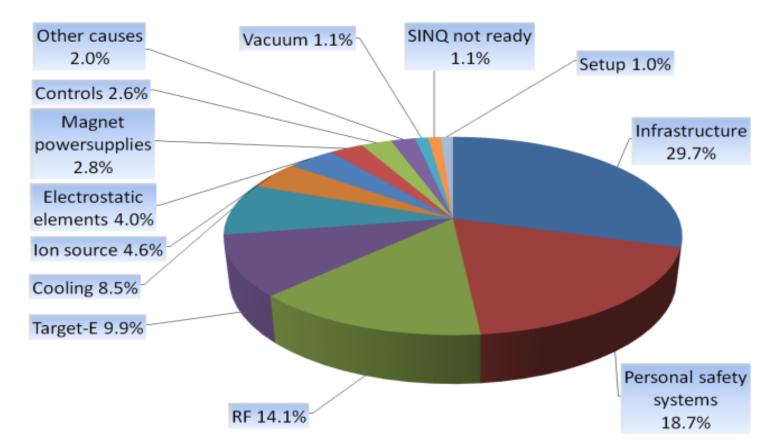
Ninth CW and High Average Power RF Workshop 21 - 24 June 2016


- Overview HIPA (High Intensity Proton Accelerator)
- RF-system for the Injector 2 cyclotron
 - upgrade program
- RF-system for the Ring cyclotron
 - operating experience
 - flattop problems
 - operating parameters
- Tetrodes
 - lifetime and failures



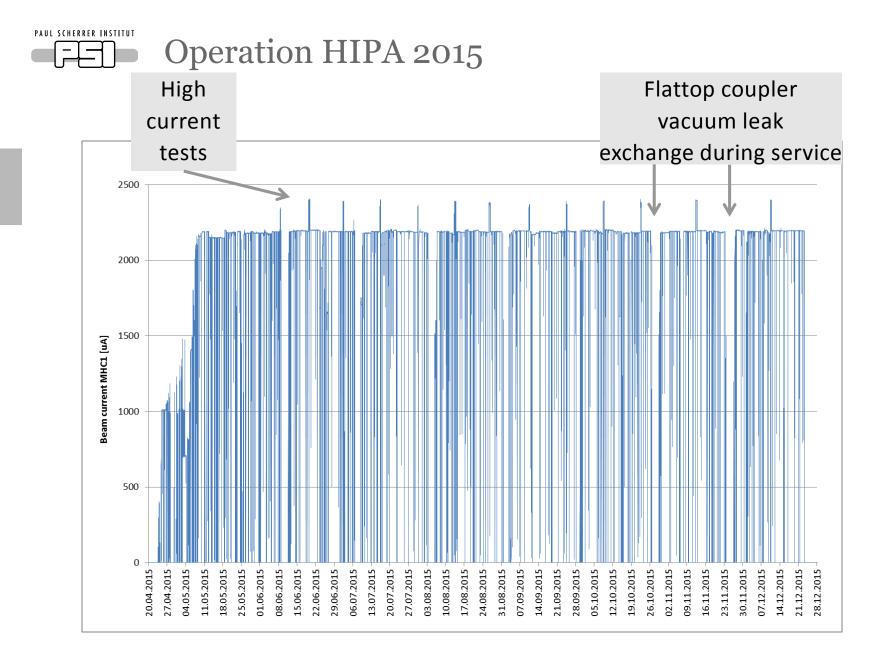
Operation HIPA 2014

Operation statistic HIPA 2014

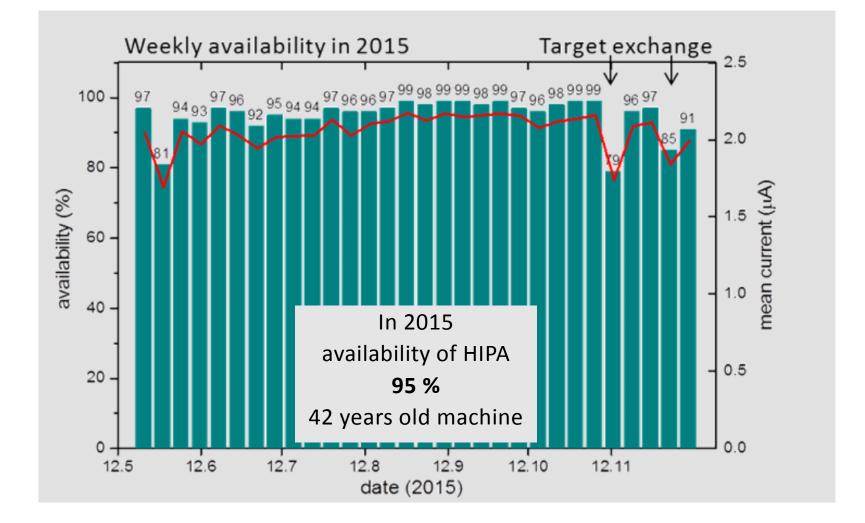

(E) Operation statistic HIPA 2014

Beam-time statistics for HIPA	2014
Total scheduled user beam time	4608 h
Compensated outage time	+84 h
Beam current integral	
To meson production targets	9.1 Ah
To SINQ	6.0 Ah
To UCN	0.02 Ah
To isotope production targets	0.08 Ah
Outages	
Total outages (current < 1 mA, time > 5s) minutes)	520 h
Availability (with compensated outage time)	86.4%

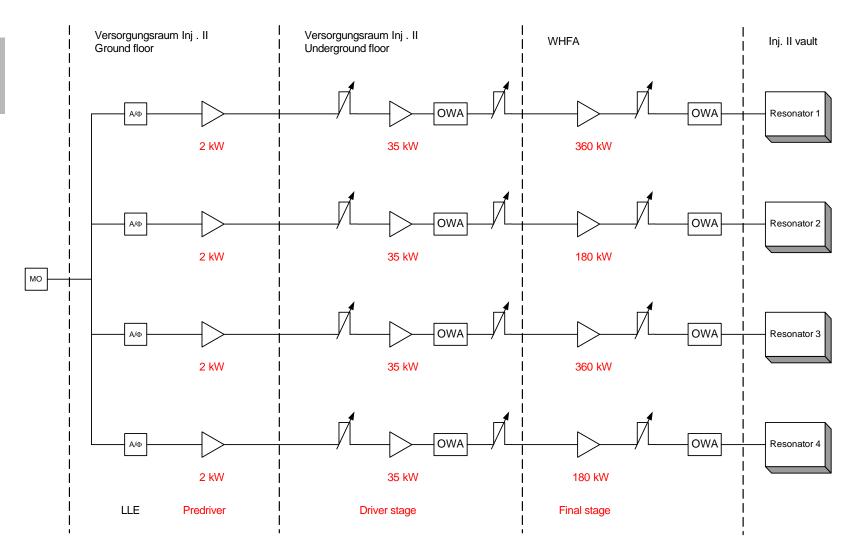
9th CWRF workshop, 21-24 June 2016, Grenoble



Operation statistic HIPA 2014


Downtime characterization for HIPA outtages longer then 5 minutes (ca. 520 hours)

Courtsey by Anton C. Mezger Annual Report 2014, operation of the PSI Accelerator Facilites in 2014


Operation statistic 2015

		jector 2	Cycloti	ron	Injection e	nergy: 870 keV
		2 3			Extraction of Number of	energy: 72 MeV
					Number of	
Resonato	or 1					sector magnet
Resonator	type	material	frequency	gap voltage	Wall losses in cavity	incident power @ 2.4 mA Beam
1&3	Double gap cavity	aluminum	50 MHz	~ 420 kVp	~ 150 kW	~ 225 kW
2 & 4	Flattop cavity	aluminum	150 MHz	~ 31 kVp	~ 5 kW	~ 14 kW
2 & 4 new	Single gap cavity	aluminum	50 MHz	~ 400 kVp @ extraction	~ 50 kW	
9t	h CWRF workshop, 21-24 J	une 2016, Grenoble		M. Schneider		Page 10

PAUL SCHERRER INSTITUT

Overview new rf system for the Injector 2 cyclotron

Status upgrade Injector 2: Resonators

Test bunker had to be moved: Old systems not any more supported -> new psys

- -> new vacuum system
- -> new data acquisition system

Commissioning end of June 2016

Tests of resonator 4:

- -> final design tuners
- -> bridge between lips (electrodes)
- -> calibration of gap voltage

Shutdown 2018: installation of Resonator 2 as vacuum chamber
 Shutdown 2019: commissioning of new rf – system for resonator 2 installation of Resonator 4 as vacuum chamber
 Shutdown 2020: commissioning of new rf – system for resonator 2

Status upgrade Injector 2: Amplifiers

Installation of transmission line for new final stages

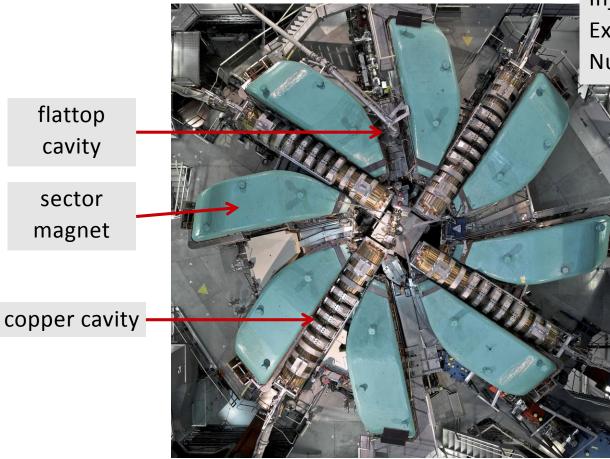
2 x 1MW Amplifiers assembled

Status upgrade Injector 2: Amplifiers

Tube socket for RS2074HF

1 final stage tested on load

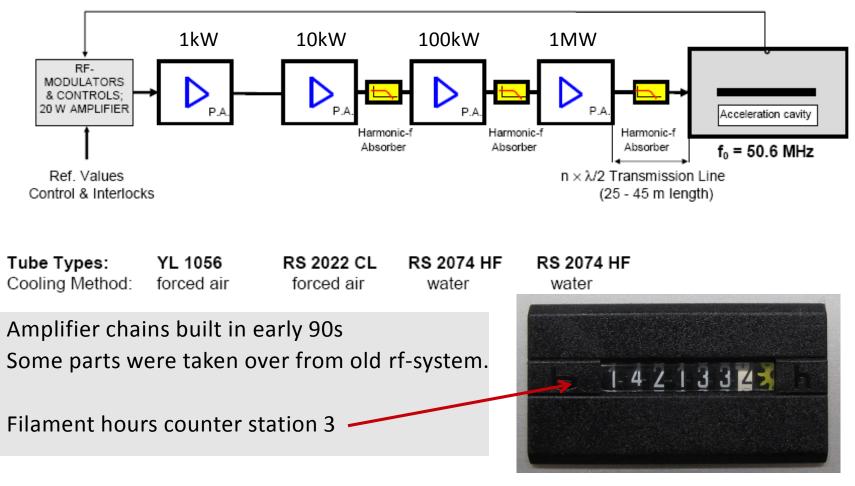
Test of 4 units until end of 2016


2 x 1MW amplifier in the machine shop during assembly finished until end of august

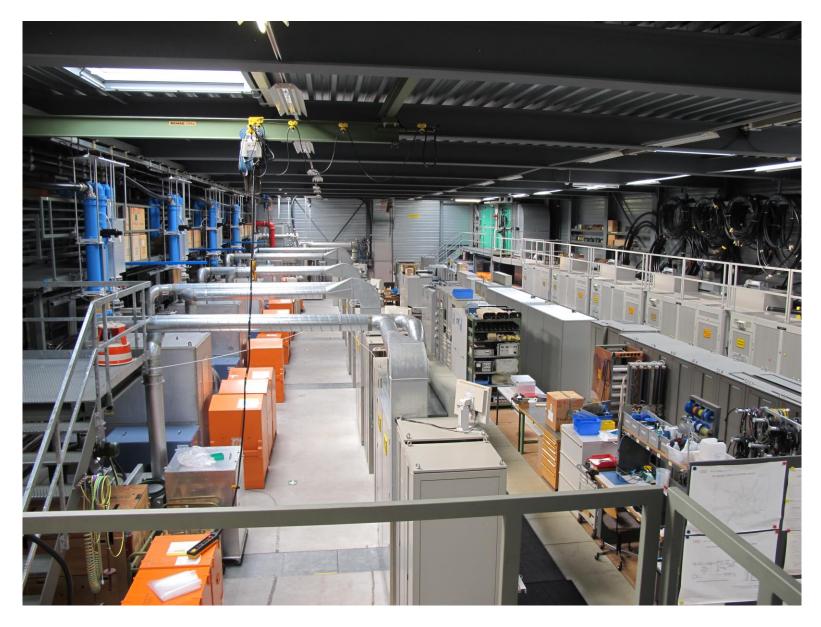
9th CWRF workshop, 21-24 June 2016, Grenoble

Ring cyclotron

Injection energy: 72 MeV Extraction energy: 590 MeV Number of turns: 186


numbers	type	material	frequency	gap voltage	incident power no beam	incident power @ 2.4 mA beam
4	Main cavity	copper	50 MHz	~ 850 kVp	~ 250 kW	~ 600 kW
1	Flattop cavity	aluminum	150 MHz	555 kVp	~ 90 kW	~ - 30 kW

9th CWRF workshop, 21-24 June 2016, Grenoble


Amplifier chain for one copper cavity in ring cyclotron

4- STAGE POWER AMPLIFIER CHAIN, EMPLOYING POWER TETRODE TUBES

Spinnerei (amplifier hall)

«smaller» amplifiers for the ring cyclotron

1 / 10 kW amplifier @ 50MHz

1 / 10 kW amplifier @ 150MHz

Problems Anode PS Flattop in 2014

- Resistor in filter in Anode PS overheated during failure analysis
- high losses in filter
- Missing branch in 12 pulse rectifier
- 1 Diode was blown up
- 5 Diodes had a short
- Inspection of all diodes in 100kW Anode PS by measuring isolation
- Shutdown 2015
 600 diodes tested.

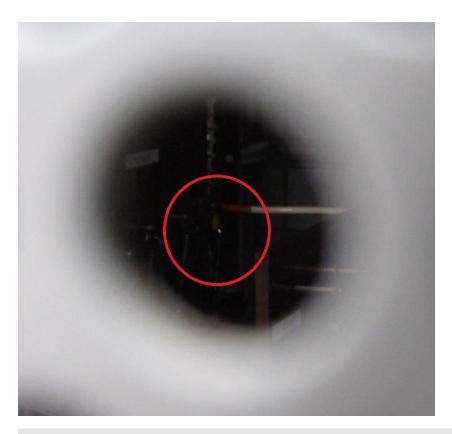
Unscheduled downtime in 2015 caused by rf

system	component	failure	downtime
Cav. 1	solid state amplifier	fan failure	45'
Cav. 2	100kW amplifier	resistor in Anode PS	45'
Cav. 2	1kW amplifier	tetrode failure (G1-G2 short)	1h
Cav. 4	coupler & all amplifiers	arc on coupler, AC/DC over current in PS, trip of several circuit breakers	3h 51'
Cav. 1	1MW amplifier	fan failure Anode PS	3h
Cav. 1 – 4, FT	HFO	cooling circuit for tetrodes	1h 19'
Cav. 1	1MW amplifier	breakdown in capacitor amplifier replaced	2h 30'
Cav. 1 – 4, FT	HFO	insufficient cooling power, wrong operation mode	24' + 9'
Cav. 1	1kW amplifier	arc in tetrode	9'
Cav. 2	100kW amplifier	tetrode failure (G1-K short) tube replaced	2h 11'
Cav. 4	100kW amplifier	UG2 PS capacitor	4h

9th CWRF workshop, 21-24 June 2016, Grenoble

M. Schneider

Unscheduled downtime in 2015 caused by rf


system	component	failure	downtime
Cav. 1	solid state amplifier	fan failure	45'
Cav. 2	100kW amplifier	resistor in Anode PS	45'
Cav. 2	1kW amplifier	tetrode failure (G1-G2 short)	1h
Cav. 4	coupler & all amplifiers	arc on coupler, AC/DC over current in PS, trip of several circuit breakers	3h 51'
Cav. 1	1MW amplifier	fan failure Anode PS	3h
Cav. 1 – 4, FT	HFO	cooling circuit for tetrodes	1h 19'
Cav. 1	1MW amplifier	breakdown in capacitor amplifier replaced	2h 30'
Cav. 1 – 4, FT	HFO	insufficient cooling power, wrong operation mode	24' + 9'
Cav. 1	1kW amplifier	arc in tetrode	9'
Cav. 2	100kW amplifier	tetrode failure (G1-K short) tube replaced	2h 11'
Cav. 4	100kW amplifier	UG2 PS capacitor	4h

9th CWRF workshop, 21-24 June 2016, Grenoble

Cav. 2 100kW amplifier resistor in Anode PS

Never walk through the amplifier hall on Friday at 18:30.....

Spark on HV divider in anode power supply due to broken wire at resistor. 19:15 Beam off, rf off, start of repair

9th CWRF workshop, 21-24 June 2016, Grenoble

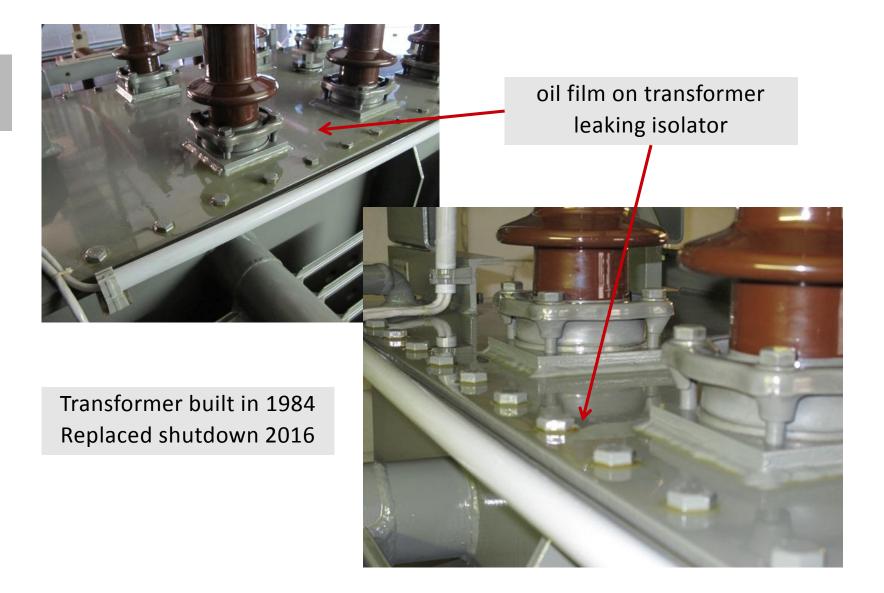
Cav. 2 1kW amplifier tetrode failure

After repair on the same Friday at 20:00.....

- tetrode in 1kW amplifier had short between grid and screen
- replaced by new one

21:00 back on operation with beam

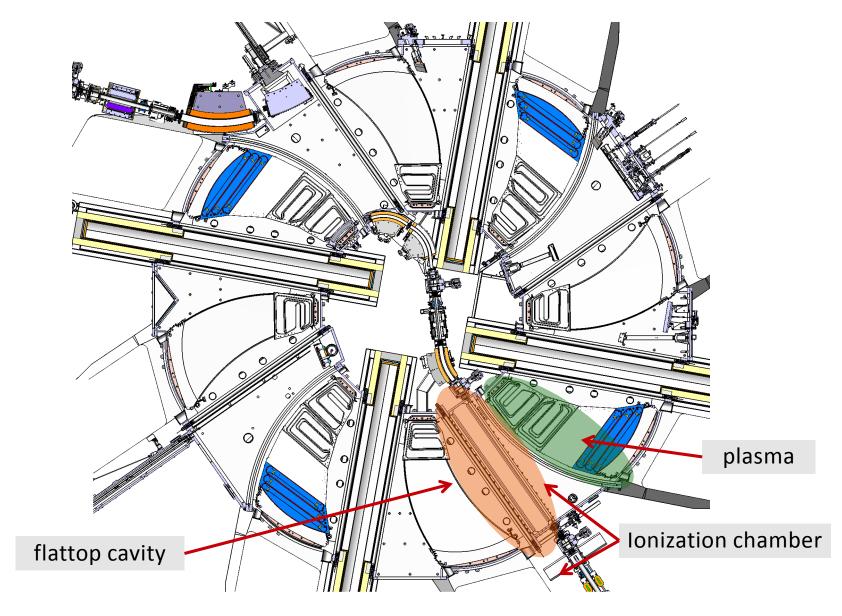
Cav. 1 1MW amplifier fan failure Anode PS



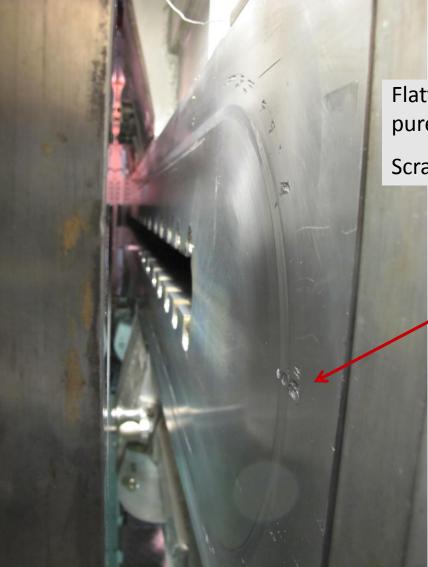
Fan for transformer cabinet was running only on lower speed. No spare part in house.

Improved cooling by a party tent.

Oil leaking transformer Anode PS



New transformer in Anode PS station 3


Transformer installed during shutdown 2016

Flattop cavity

Problems to get a good vacuum

Flattop cavity pure aluminum

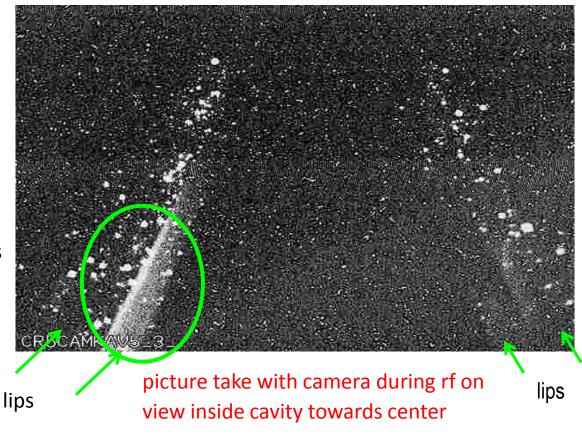
Scratches from vacuum sealing

How a vacuum surface should not look like

Machining / smoothing surface in 20?? for good surface for the vacuum o-ring sealing

Shutdown 2015

- remove cavity -> necessary preparations for defining machining process
- refurbish hydraulic tuning system
- Improve vacuum (new square sealing)
- painting with Aquadag

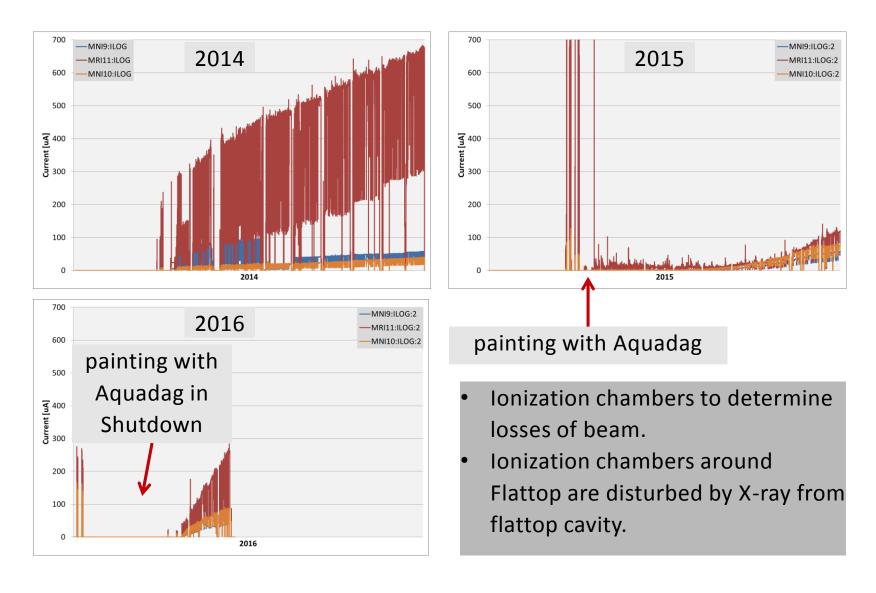


Flattop cavity shutdown 2015

- Cavity was reinstalled in cyclotron
- During conditioning for the nominal voltage 15 kW more power needed.
- High losses on ionization chambers

glowing between lips

Painting inside flattop cavity and....



Painting inside vacuum chamber and lips

Ionization chambers around flattop cavity

Operation parameters Ring rf without beam

		cavity 1	cavity 2	cavity 3	cavity 4	flattop cavity
gap voltage	kVp	782	844	848	882	454
1MW P forward	kW	225	250	280	265	110
1MW P reflected	kW	17	16	20	17	9.9
VSWR		1.76	1.68	1.73	1.68	1.86
100kW P forward	kW	7	7.5	6	6	6.5
100kW P reflected	kW	0.2	0	0.2	0.1	0.09
1MW P in driver	kW	6.8	7.5	5.8	5.9	6.41
1MW P produced	kW	218	243	274	259	104
1MW U Anode	kV	15.9	15.9	16.5	16	11.5
1MW I Anode	А	23.8	23.3	25.4	25.4	16.6
1MW P Anode DC	kW	378	370	419	406	191
1MW Anode PS 16kV grid power	kW	413	413	456	435	
tetrode cooling water inlet temperature	°C	53.6	53.5	53.7	53.4	54.8
tetrode cooling water outlet temperature	°C	66.6	63.8	65.3	63.9	66.9
tetrode cooling water delta temperature	°C	13.0	10.3	11.6	10.5	12.1
tetrode cooling water flow rate	l/min	213	227	221	231	112
P calorimetric	kW	194	163	179	170	95
efficiency RF/DC		0.58	0.65	0.65	0.64	0.54
efficiency RF/AC 16kV Mains		0.53	0.59	0.60	0.60	

Operation parameters Ring rf with beam 2.4mA

		cavity 1	cavity 2	cavity 3	cavity 4	flattop cavity
gap voltage	kVp	844	842	846	889	553
1MW P forward	kW	649	620	640	625	36
1MW P reflected	kW	22.5	32	21	30	22
VSWR		1.46	1.59	1.44	1.56	8.16
100kW P forward	kW	35	35.5	34	34	0.4
100kW P reflected	kW	1.2	0.05	1.1	1.5	0.4
1MW P in driver	kW	33.8	35.45	32.9	32.5	0
1MW P produced	kW	615	585	607	593	36
1MW U Anode	kV	15.9	15.9	16.5	15.9	11.5
1MW I Anode	А	57.1	55.7	58.3	57.7	4.8
1MW P Anode DC	kW	908	886	962	917	55
1MW Anode PS 16kV grid power	kW	1002	995	1052	1016	
tetrode cooling water inlet temperature	°C	54.2	53.6	54.2	54.1	55.3
tetrode cooling water outlet temperature	°C	79.7	77.4	79.1	76.2	60.4
tetrode cooling water delta temperature	°C	25.5	23.8	24.9	22.1	5.1
tetrode cooling water flow rate	l/min	210	220	219	228	107
P calorimetric	kW	374	367	382	353	38
efficiency RF/DC		0.68	0.66	0.63	0.65	0.65
efficiency RF/AC 16kV Mains		0.61	0.59	0.58	0.58	

Power efficiency rf systems for the Ring cyclotron

	filament on	no Beam	2.4 mA beam current
forward rf power			
cavity 1		225 kW	649 kW
cavity 2		250 kW	620 kW
cavity 3		280 kW	640 kW
cavity 4		265 kW	625 kW
Flattop cavity		110 kW	14 kW
Total rf power	0 kW	1130 kW	2548 kW
	total filament power		
grid power	* POV		
Anode PS 1	mentin	413 kW	1002 kW
Anode PS 2	I filal ook	413 kW	995 kW
Anode PS 3	(otal - 1	456 kW	1052 kW
Anode PS 4		435 kW	1016 kW
power distribution WSGA	181 kW	526 kW	533 kW
total grid power	181 kW	2244 kW	4599 kW

|--|

Including all rf systems (IIrf, tuning system, control system, forced air cooling, transmission line cooling, load for flattop).

Not included power for water cooling circuits.

Cooling system for tetrodes HFo

Cooling circuit HF0 for tetrode amplifiers for the ring cyclotron

- Demineralized water
- Inlet temperature at tube 55°C
- Outlet temperature up to 80°C
- Heat recovering system

in 2015 -> 3357 MWh recovered

Suppling ¼ of heat for PSI buildings

(Shutdown from Christmas to April)

RS2022CL

RS2074HF

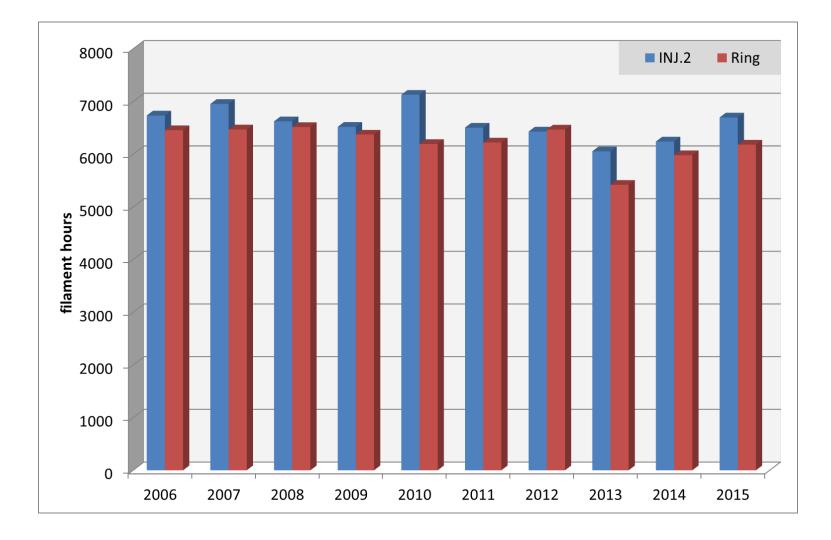
Overview amplifiers for the Injektor 2 cyclotron

amplifier	tube	Res.1	Res.2	Res.3	Res.4	Spare
1kW / 15kW @ 50MHz Zarat, PSI upgrade	YL1056 RS2026CL	1		1		
300kW / 50 MHz Telefunken, PSI upgrade	RS2074HF	1		1		1
1kW / 10kW @ 150 MHz Zarat, PSI upgrade	RS1054L RS2022CL		2			
0.5 / 5 / 70 kW @ 150MHz Philips, PSI upgrade	YL1056 RS2022CL RS2004J				1	

Overview amplifiers for the Ring cyclotron

amplifier	tube	main cavities	flattop cavity	test	spare
1kW / 15kW @ 50MHz Zarat, PSI upgrade	YL1056 RS2024CL			1	
1kW / 10kW @ 50MHz Telefunken, PSI upgrade	YL1056 RS2022CL	4			1
100kW / 50 MHz Telefunken, PSI upgrade	RS2074HF	4		1	
1MW @ 50 MHz PSI	RS2074HF	4		1	1
1kW / 10kW @ 150 MHz Zarat, PSI upgrade	RS1054L RS2022CL		1		1
150kW @ 150MHz PSI	RS2004J		1		1

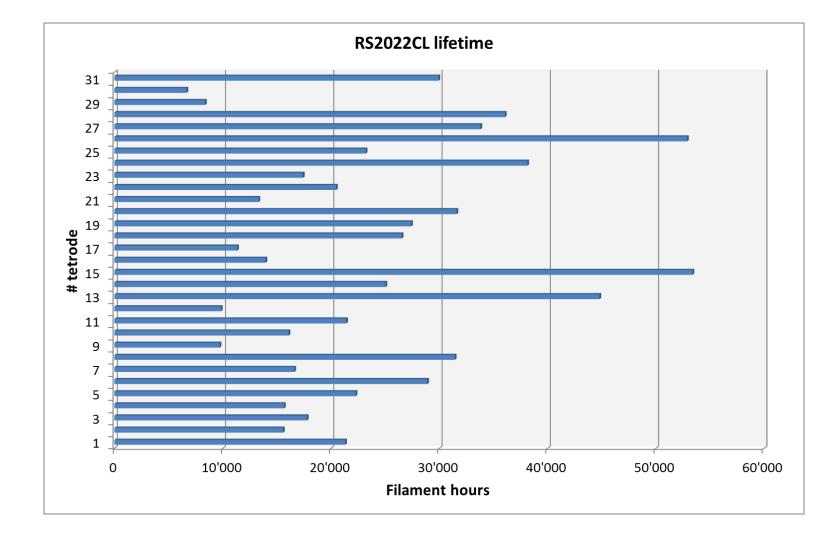
Tetrodes in operation at HIPA


type	cooling	numbers
YL1056	Air	7
RS1054L	Air	3
RS2022CL	Air	8
RS2026CL	Air	2
RS2074HF	water	10
RS2004J	water	2

All tubes are primary design of Siemens, nowadays produced by Thales Electron Devices.

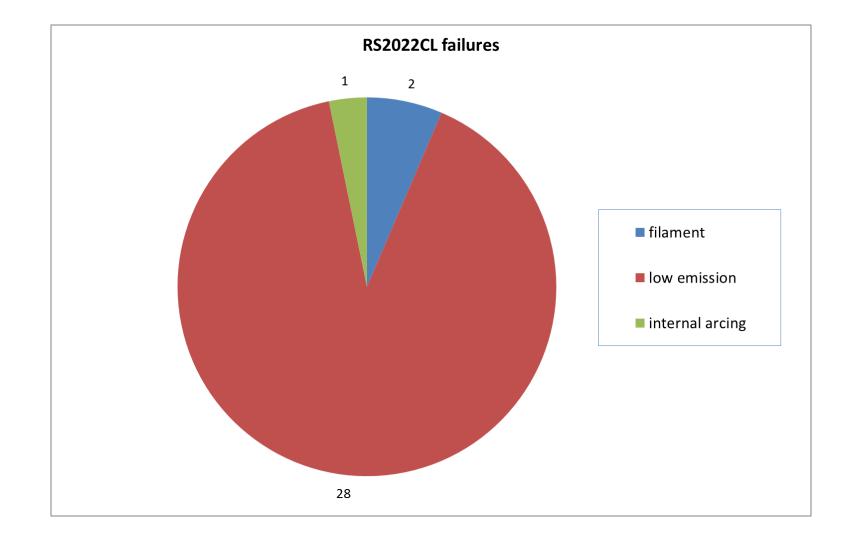
Amplifiers on test stand not included.

Operating hours per year

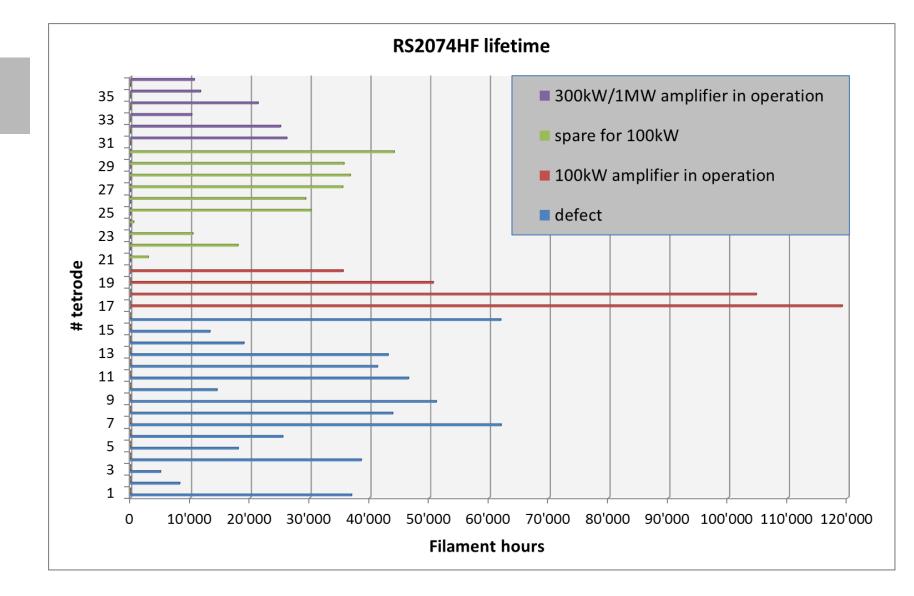


- Minimize switching of filament on/off
 On maintenance day tetrodes kept on nominal filament power
- Under heating of tubes extends lifetime.
 Nominal voltage 5 to 10%
- For the Ring cyclotron final stage (1MW) and driver (100kW) are using the same tube RS2074HF.

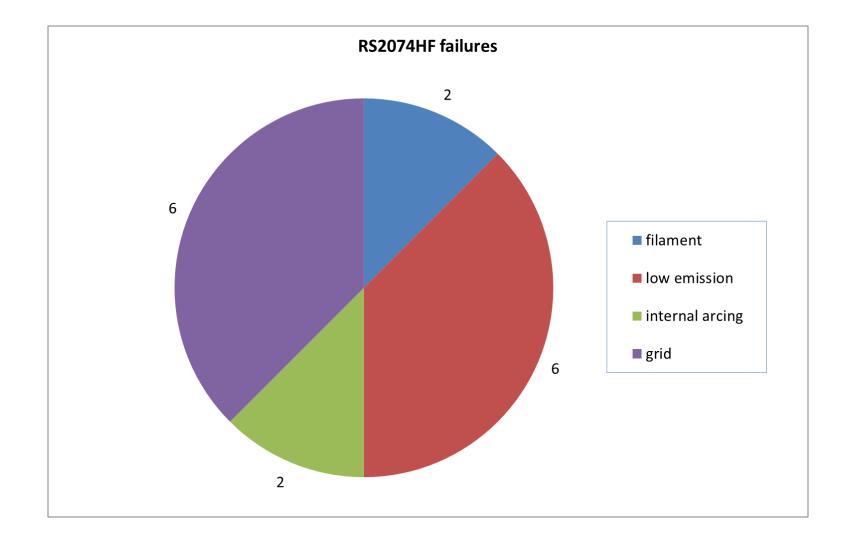
New tubes are installed in final stage, after 5 to 6 years tubes are replaced. Old tubes run until their end of life in driver.

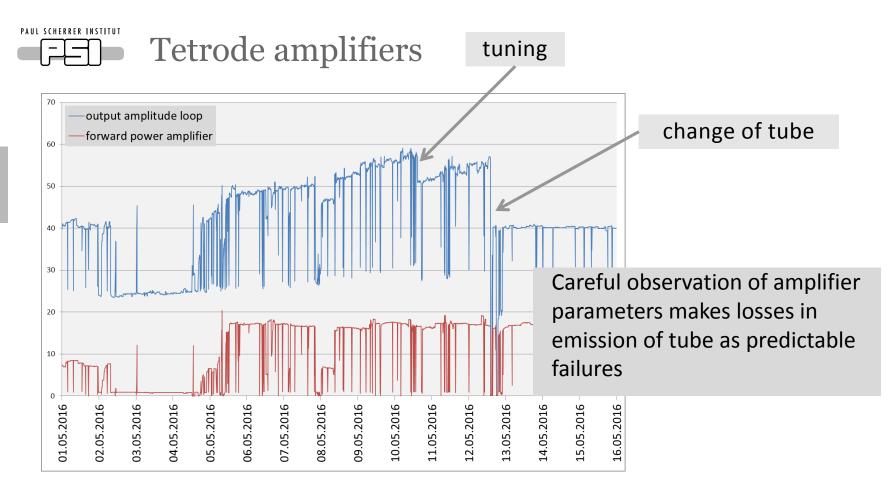


Tetrode lifetime statistic RS2022CL



Tetrode cause of failure RS2022CL




Tetrode lifetime statistic RS2074HF

Tetrode cause of failure RS2022CL

- Broken filament, short between grid/screen or grid/cathode are unpredictable failures
- Trained stuff to handle tubes, high voltage and amplifier tuning is needed.

Wir schaffen Wissen – heute für morgen

My thanks go to the HIPA rf support team

- Hansreudi Fitze
- Wolfgang Tron
- Andreas Stadler
- Harald Siebold
- Oliver Brun
- Sebastian Jetzer
- Arthur Schmidheiny
- Erich Wüthrich
- Manuel Brönnimann
- Stefan Mair
- Andreas Hauff

