

Boosted Top Quarks

Dan Marley **LHC***top***WG** Meeting
17-18 May 2016

demarley@umich.edu

Outline

- Introduction & Motivation
- Run1 Summary
 - Boosted Measurements
 - Systematic Uncertainties
- Run2 Outlook
 - Future Developments

Boosted Tops

- Top-quarks that are produced with high-p_T (p_T≥300 GeV)
 are considered boosted & have collimated decay products
 - New techniques for boosted top-quark reconstruction!
- Boosted top-quarks are useful for studying high-p_T top properties & searching for heavy resonances*

Large-radius jets + Jet Substructure

Special isolation + lepton-jet overlap removal

Motivation

- Why use boosted top-quarks?
 - Traditional methods of reconstructing top-quarks begin to deteriorate when jets merge & leptons/jets overlap!
 - If using a method such as a Likelihood fitter or χ^2 algorithm, you will not use the appropriate jets
 - Boosted events may not pass common resolved event selections that require ≥4 jets
- High-p_T region: Largest discrepancies between Data and prediction can be readily studied using boosted tops

Boosted Leptonic Tops

Consider small-radius (r=0.4,0.5) jets near lepton
 Special techniques developed to recover events where the lepton and jet begin to overlap

• ATLAS

$$I_{ ext{mini}} = \sum_{ ext{tracks}} rac{p_T^{ ext{track}}}{p_T^\ell}$$

- I_{mini} <0.05: p_T -dependent isolation considering all tracks (except the lepton's) with p_T >400 MeV and ΔR <(10/ p_T^{ℓ}) Overlap removal procedures described in back-up

• CMS

 Kinematic cut on orthogonal component of p_T between lepton and jet for leptons that are within ΔR<0.5 of the jet

Boosted Hadronic Tops

- For hadronically-decaying boosted tops, use large-radius jets and substructure to "tag" top-quarks
- Grooming: Remove soft radiation from pileup/underlying event/ISR
 - Trimming: Recluster jet constituents and remove subjets with p_T below some threshold
 - Filtering: Recluster jet constituents and keep N hardest subjets
 - **Pruning**: Remove soft and wide-angle radiation
 - Softdrop: Remove soft and wide-angle radiation
- Substructure: Identify top-quarks using structure in the large-R jet
 - N-subjettiness: How well the jet is described by N or fewer subjets
 - k_T splitting scale: Scale of the last recombination
- Lots of techniques have been developed to tag top-quarks, the following slides focus on those applied to top measurements

ATLAS Tagger

Common tagger used in run1
 measurements: cds ("Tagger III")

- Anti- k_T R=1.0 jet trimmed: r_{sub} =0.3 & $p_{T,subjet} > 0.05*(large-R jet <math>p_T)$
- large-R jet p_T > 300 GeV
- large-R jet mass > 100 GeV
- First splitting scale $\sqrt{d_{12}} > 40 \text{ GeV}$

100

120 140 160 180 200

Large-R jet √d₁₂ [GeV]

1.5

0.5

20

Data/Sim.

CMS Top Tagger

- C/A R=0.8 jet <u>cds</u>
 - Recursive declustering of large-R
 jet, J→j₁,j₂→etc.
 - If subjets satisfy $\Delta R(j_1,j_2) > 0.4-0.004*p_T(J)$, keep subjets distinct
 - Keep subjets if they satisfy p_{T,i} > 0.05*p_T(J)
 - Continue until a max. of 4 subjets
- large-R jet p_T > 400 GeV
- ≥3 subjets & min(pairwise subjet mass)>50 GeV
- 140 < large-R jet mass < 250 GeV

Run-1 Results

- ATLAS and CMS used boosted top-quarks in many run-1 results (primarily applied in searches)
 - Often a complementary channel to analyses that also employed *resolved* top-quark reconstruction
- (Relatively) low statistics for boosted top-quarks, but results still provide strong understanding of high-p_T region
 - These results have set a good precedent for run2 where we expect significantly more boosted top-quarks

ATLAS

 Two ATLAS measurements, the Boosted differential cross section [arXiv] & Boosted charge asymmetry [arXiv] utilized a common boosted l+jets event selection (mini-isolation & ATLAS top tagger)

Systematics

 With the introduction of a new reconstructed object (large-R jets), there are new systematic uncertainties to consider

- Particle-level uncertainties (diff XSec only) dominated by the large-R jet uncertainties
- Parton-level uncertainties (diff XSec & A_C) dominated by ttbar modeling

^{*}To obtain particle-level measurement, the same substructure techniques used on recolevel large-R jets are applied to truth-level large-R jets (including trimming)

CMS

- The l+jets boosted differential cross-section measurement complements the resolved analysis with an extra 4 bins
 - Lepton isolation p_T^{rel} +
 CMS Top Tagger
- Top tagging efficiency extracted from maximum likelihood fit over multiple kinematic regions based on number of top and b-tags

resolved final bin: >400 GeV

Systematics

- The top tagging efficiency was found to be strongly anticorrelated with the crosssection
- Dominant experimental uncertainty from top tagging uncertainty
 - More dominant at higher top-quark p_T
 p_T<600 GeV: ±5%
 p_T>600 GeV: ±18%

 JES uncertainty contains contributions from small-r and large-R jets. C/A R=0.8 found to have similar uncertainty as anti-k_T r=0.7, within 1% (+1% uncertainty for Data/MC disagreement)

Run1 Summary

- During run1, the measurements performed offer competitive results, but they are dominated by low statistics and large systematic uncertainties
 - Able to extend resolved results by 1 or more bins into high- p_T (and high ttbar invariant mass) regions
- Simple taggers applied for measurements, following earlier use in searches (e.g., ttbar resonances), that yield high efficiencies
 - In l+jets channels, simple taggers perform well due to the high signal:background ratio (more sophisticated taggers needed for all-hadronic final states, e.g., HEPTopTagger)

Run2 Outlook

- With the increased cross section for ttbar production at 13 TeV, many analyses have already exploited boosted toptagging in run2
 - Thus far, these have been searches!
 (resonances, SUSY, VLQ, etc.)
- Preliminary top taggers released by collaborations are being studied for initial measurements (top taggers already applied by many searches)
 - Run1 studies were repeated using 13 TeV simulations to produce new optimized working points

Run2 Tagger

- At 13 TeV it has been determined that top tagging is improved by using the jet mass and nsubjettiness ("winner-takes-all" axis) substructure variables cds
 - Changes to jet trimming parameters (r_{sub}=0.2) & p_Tdependent cuts
- Initial evaluations of the systematic uncertainties apply extrapolations based on run1 uncertainties & differences between run1 and run2

Run2 Tagger

- At 13 TeV, it has been determined that the optimal run2 tagger utilizes the soft drop mass and n-subjettiness variables to tag top-quarks. cds
 - At low-p_T, the groomed nsubjettiness variable is recommended with the C/A R=1.5 jet
 - At high-p_T, the un-groomed nsubjettiness variables is recommended with the Anti-k_T R=0.8 jet

Future Developments

- Building off of run1 "capstone" papers [ATLAS, CMS], more sophisticated taggers are being explored for future results
 - Lower efficiency taggers, but better signal efficiency to background rejection
- Most importantly, with a much larger dataset, the magnitude of the systematic uncertainties should be reduced

Future Developments

- Some examples of future developments on top taggers and jet reconstruction.
 If interested, please visit the BOOST2015 indico page and review work presented there: BOOST2015
- Top Taggers
 - Shower Deconstruction: Likelihoods that large-R jet originates from signal or background (<u>ATLAS</u>, <u>CMS</u>)
 - Machine Learning: Use deep learning to identify boosted top-quarks (talk)
- Jet Reconstruction
 - Variable-R Jets: Instead of fixed-radius jets, use variable-R jets that are built to contain the particle of interest (<u>arxiv</u>)
 - Re-clustering: Use existing small-r jet collections to build large-R jets with standard jet reconstruction algorithms (anti-kT) (arxiv)

BOOST 2016

- From 18-22 July 2016 the **BOOST** conference will be held in Zurich
- Lots of studies will be presented from both collaborations regarding boosted top tagging
 - Results from early run2 data will be presented!
- Attend or follow online if interested in applying more sophisticated taggers, or learning what techniques exist & are under development

Conclusions

- Boosted top-quarks are necessary to make measurements in the high-pT regime and compliment the corresponding resolved analyses
 - Look for largest discrepancies between Data & predictions and look for hints of new physics!
- Run2 will see a significant increase in boosted top-quark statistics and improves reconstruction methods
 - Improved systematic uncertainties with increase in dataset

Back-up

CMS 8 TeV Taggers

Jet Clustering

$$d_i = p_{T_i}^{2a}$$

$$a = 1 : k_T$$

 $a = 0 : C/A$
 $a = -1 : anti-k_T$

$$d_{ij} = rac{\Delta R_{ij}^2}{R^2} \min(p_{T_i}^{2a}, p_{T_j}^{2a})$$

Jet Clustering

- 1. Define the splitting scales for each input and pairs of inputs (Topoclusters or PF objects).
- 2. Find min $\{d_q\}$, where d_q includes all of the distance scales d_i and d_{ij}
- 3.(a) If min is a d_{ij} : redefine as d_k .

$$p_{T_k} = p_{T_i} + p_{T_j}$$

$$\eta_k = (p_{T_i}\eta_i + p_{T_j}\eta_j)/p_{T_k}$$

$$\phi_k = (p_{T_i}\phi_i + p_{T_j}\phi_j)/p_{T_k}$$

- 3.(b) If min is a d_i: Remove from list and move to JET list
- 4. Repeat until all JETs formed

Jet Substructure

Initial jet

Measure the dR between each constituent k and the two subjets.

 $d_k = pT(k) \times min(dR(1,k),dR(2,k))$

Go back one step in the jet clustering history: you have two

Measure the dR between them and their pTs.

 $Vd_{12} = min(pT(1),pT(2)) \times dR(1,2)$

Overlap Removal: ATLAS

- Muons that fall within $\Delta R < (0.04 + 10/p_T^{\ell})$ are removed from the event
- Electrons
 - run1 (boosted diff. XSec):

Since leptons deposit energy in the calorimeters, an overlap removal procedure is applied in order to avoid double counting of leptons and small-R jets. In order to improve the reconstruction efficiency in the highly boosted topology, the same overlap removal procedure as used in Ref. [20] has been adopted. First, jets close to electrons, with $\Delta R(e, \text{jet}_{R=0.4}) < 0.4$ are corrected by subtracting the electron four-vector from the jet four-vector and the JVF is recalculated after removing the electron track. The new e-subtracted jet is retained if it satisfies the jet selection criteria listed above, otherwise it is rejected. After this procedure, electrons that lie within $\Delta R(e, \text{jet}_{R=0.4}) = 0.2$ from a small-R jet are removed and their four-momentum added back to that of the jet. The muon-jet overlap removal procedure removes muons that fall inside a cone of size $\Delta R(\mu, \text{jet}_{R=0.4}) < 0.04 + 10 \text{ GeV}/p_{T,\mu}$ around a small-R jet axis.

- run1 (boosted A_C): If an electron is within $0.2 < \Delta R < 0.4$ of small-r jet, the electron is removed. If the electron is within $\Delta R < 0.2$, the jet is removed