Di-photon at 750 GeV (A first read)

LianTao Wang

Jan 13. U. Chicago

Excess around 750 GeV?

Certainly too early to claim victory. But, tantalizing...

Exactly 4 years ago, $m_{\gamma\gamma} \approx 125$

 \pm 2 σ Expected CLs

Back to 750

"signal rate": 4 fb? Large. Same order as the SM Higgs to diphoton rate.

Di-photon resonance

1 million X^0 hn γ

Di-photon resonance

- Can be spin 0 or 2.
 - Not spin-1. Landau-Yang theorem.
 - Completely identical to the argument of the 125 GeV di-photon resonance.
- Spin 0 is much more compelling than spin-2.
 - Very difficult to write down a complete model of spin-2.

How can neutral particle goes to photon, which only couples to charged particles

For the SM higgs, they are top quark and W boson

Can top and/or W do it for the X(750)?

No. Can not (just) be top or W.

750 GeV res. can not be alone. Must have more new physics!!

- Say X couples to top and or W, with arbitrary coupling.
 - ▶ BR(di-photon) is less than 10⁻⁴.
 - 4 fb to di-photon means 10s -100 pb to ttbar and or WW.
 - A factor of 4 or 5 in the production rates between 8 and 13 TeV.
 - ▶ ttbar and/or WW signal of at least pb at 8 TeV.

Possible to have pb(s) level tt or WW resonance at Run 1?

- No.	final state	\parallel 700 GeV	$750~{\rm GeV}$	
	$t\overline{t}$ (narrow)	\parallel 540 fb	450 fb	CMS [6]
	$t\bar{t}$ (wide)	620 fb	$520~{\rm fb}$	CMS [6]

 $WW (\ell \nu j j) \parallel 60 \text{ fb} \qquad 70 \text{ fb} \qquad \text{ATLAS [10]}$

 Must be more new physics in addition to the 750 GeV resonances!!

Production

- Unlikely from qqbar.
 - Suppressed by small quark masses, otherwise suffer from sever flavor constraints.
- Possibly (like the Higgs)

Need more new physics here as well, colored!

What kind of scalar?

- CP even, real scalar.
 - ▶ Typically will mix with the Higgs.
 - More constraining
 - Decays like Higgs with tiny BR to di-photon.
 - Difficult to work.
- CP odd, pseudo-scalar.
 - Much better candidate.

$$\mathcal{L}_{\rm int} = \frac{y_f}{\Lambda_f} \eta (i\overline{f_L}Hf_R + \text{h.c.}) + \frac{c_B}{\Lambda_g} \frac{g^{\prime 2}}{16\pi^2} \eta B_{\mu\nu} \tilde{B}^{\mu\nu} + \frac{c_W}{\Lambda_g} \frac{g^2}{16\pi^2} \eta W^a_{\mu\nu} \tilde{W}^{a\mu\nu} + \frac{c_g}{\Lambda_g} \frac{\alpha_s}{4\pi} \eta G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$

with SM top

$$\mathcal{L}_{\text{int}} = \frac{y_f}{\Lambda_f} \eta (i\overline{f_L}Hf_R + \text{h.c.}) + \frac{c_B}{\Lambda_g} \frac{g'^2}{16\pi^2} \eta B_{\mu\nu} \tilde{B}^{\mu\nu} + \frac{c_W}{\Lambda_g} \frac{g^2}{16\pi^2} \eta W^a_{\mu\nu} \tilde{W}^{a\mu\nu} + \frac{c_g}{\Lambda_g} \frac{\alpha_s}{4\pi} \eta G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$

M. Low, A. Tesi, LTW

- Need anomaly contribution for large di-photon BR.
- Will have $Z\gamma$ and ZZ.

$Z\gamma$, ZZ the next things to look for

- Also WW, ttbar, hh.

- And everything under 750

NP models

 $M_{NP} > 0.5 M_{X.}$

Vector like fermions.

We are already puzzled by m_h (125), naturalness problem.

- We are already puzzled by m_h (125), naturalness problem.
- Now another (pseudo)scalar?
 - Can make things much worse.
 - Not controlling weak scale masses in an obvious way. Even landscape may not help.

- We are already puzzled by m_h (125), naturalness problem.
- Now another (pseudo)scalar?
 - Can make things much worse.
 - Not controlling weak scale masses in an obvious way. Even landscape may not help.
- However, the 750 GeV pseudo-scalar may be the first hint of a natural theory.

0		Scale factor/	p
π^{o} DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
2γ	(98.823±0.034) %	δ S=1.5	67

π^0 decay modes	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>р</i> (MeV/c)
2γ	(98.823 ± 0.034) 9	% S=1.5	67

– " $\pi^{0''}$ of a new QCD?

- Will have many other "mesons" (typically 10s), will carry SM quantum numbers (colored, etc).

π^0 decay modes	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>р</i> (MeV/c)
2γ	(98.823±0.034) %	∕₀ S=1.5	67

– " $\pi^{0''}$ of a new QCD?

- Will have many other "mesons" (typically 10s), will carry SM quantum numbers (colored, etc).

- $\Lambda = 10 \text{ TeV}$: new gluon and quarks

TeV(s), resonances

η: 750 GeV

π^0 DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>р</i> (MeV/c)
2γ	(98.823±0.034) %	∕₀ S=1.5	67

- " π^{0} " of a new QCD?

- Will have many other "mesons" (typically 10s), will carry SM quantum numbers (colored, etc).

- $\Lambda = 10 \text{ TeV}$: new gluon and quarks

TeV(s), resonances

η: 750 GeV

Natural. But mass no relation with weak scale.

Natural to have 750 with reasonable parameters

Di-photon rate in composite Higgs

Di-photon rate in composite Higgs

New QCD vs composite Higgs

- The presence of ttbar.

- Presence of top-partner.

Alternative: 2-step decav

If $m_a << M_X \approx 750$ GeV, LHC may not be able to resolve the two photons. So it could be a di-photon resonance.

May need m_a < GeV. No compelling reason. Life time of a challenging

Knapen et al Strassler et al

Alternative: 2-step decav

If $m_a << M_X \approx 750$ GeV, LHC may not be able to resolve the two photons. So it could be a di-photon resonance.

May need m_a < GeV. No compelling reason. Life time of a challenging

Knapen et al Strassler et al

- Good "straw man" to test experimentally.
- A "fall back" model if everything else is ruled out.
- Need a lot more new physics to complete the story.

Larger width?

- By adding "invisible" decays.

Di-photon rate, two scenarios

The contribution from top quark dominates production.

The contribution from anomaly dominates production and decay.

All require new physics at 500 GeV to TeV

Composite Higgs

Higgs (and W/Z goldstones) are part of the strong sector

The external fields are the SM quarks and (transverse) gauge bosons

- Higgs boson (and $W_L Z_L$) and others such as $\eta(750)$ NGB of symmetry breaking G/H.
- Small explicit symmetry breaking (involving external fields) generates Higgs potential. (NGB → pNGB).

- Fine-tuning of Higgs
 - \blacktriangleright compare $m_h{}^2$ and $c/16\pi^2~M_{NP}{}^2$
 - Not finding new physics yet at the LHC, M_{NP} > TeV.
 - Higgs mass is a few percent tuned.
 - In almost all new physics scenarios: SUSY, composite/Randall-Sundrum, etc.

- Fine-tuning of Higgs
 - \blacktriangleright compare $m_h{}^2$ and $c/16\pi^2~M_{NP}{}^2$
 - Not finding new physics yet at the LHC, M_{NP} > TeV.
 - Higgs mass is a few percent tuned.
 - In almost all new physics scenarios: SUSY, composite/Randall-Sundrum, etc.
- What would be a natural scalar mass?
 - ▶ $m_{scalar}^2 \approx c/16\pi^2 M_{NP}^2$
 - ▶ m_{scalar} > 500 GeV

- Fine-tuning of Higgs
 - \blacktriangleright compare $m_h{}^2$ and $c/16\pi^2~M_{NP}{}^2$
 - Not finding new physics yet at the LHC, M_{NP} > TeV.
 - Higgs mass is a few percent tuned.
 - In almost all new physics scenarios: SUSY, composite/Randall-Sundrum, etc.
- What would be a natural scalar mass?
 - ▶ $m_{scalar}^2 \approx c/16\pi^2 M_{NP}^2$
 - ▶ m_{scalar} > 500 GeV
- So, a plausible scenario is a natural theory (only with Higgs slightly tuned).

Big picture

- Likely to be a (pseudo)scalar at 750 GeV.
- Large rate to di-photon. Need additional new physics!
 - ▶ Both charged and colored.
 - Perhaps around 500 GeV to TeV-ish, exact range model dependent.
- Looking good for being part of a natural theory.
 - New physics span over a decade of energy beyond TeV.

Going forward

For the LHC

- Will probably know the answer by summer 2016.
- Should look for associated excess in $Z\gamma$, ZZ

Perhaps also WW, ttbar, hh

If it is there, beginning of a new era of particle physics.

- LHC May also see a few more new physics particles.
- Very unlikely to see all of them.

Certainly need to go beyond the LHC!

Beyond the LHC, future facilities

Best strategy will take a while to sort out.

Here are a few first impressions.

Recall the big picture:

- Likely to be a (pseudo)scalar at 750 GeV. Large coupling to proton.
- Large rate to di-photon. Need additional new physics!
 - ▶ Both charged and colored.
 - Perhaps around 500 GeV to TeV-ish, exact range model dependent.
- Looking good for being part of a natural theory.
 - New physics span over a decade of energy beyond TeV.

Big ring ++

 The motivation for having a very large ring, with the goal of a super proton collider with higher energy (10s to 100 TeV), would be super strong.

Completely unravel a new layer of new physics.

Another 50+ years exciting discoveries.

 Lepton colliders, such as CLIC(to lesser extent the ILC), can cover some ground, especially the new charge particles. But unlikely the full story.

On the road to the super protonproton collider.

- Completely sensible to have a Higgs factory stage.
 - The suite of precision measurement give highly valuable and complementary information.

A bit of history

- 30+ years ago. SM was incomplete. We need to find the missing particles. Not sure about gauge symmetry.
- That journey is completed by the LHC with the discovery of the Higgs boson.
- Along the way, LEP-I and LEP-II provided a huge amount of information that have determined the direction of the field.
 - Nailed the Higgs boson to be light.
 - Guided the search strategies at the LHC.
 - Much of this are still highly relevant today.

A likely story for CEPC+SPPC

- CEPC will tell us
 - ▶ Is the $\eta(750)$ part of a natural theory, part of the solution to the naturalness problem?
 - What classes of models should be the focus of the SPPC program.
- SPPC
 - Completely discover all the new physics particles, and lead us into a new Standard Model.

Naturalness.

- η(750) sharpens the naturalness problem dramatically.
- If it is part of the natural model: will see large deviations at the Higgs factory and point to particular class of models. SppC will discover full set of new particles.
- If it is not part of the natural model, together with Higgs, it points to new paradigm changes in naturalness.

Need new colliders to guide us.

Conclusions

- The di-photon excess at 750 GeV intriguing.
 - Certainly can only be part of a much bigger story.
- LHC can start to go further.
- Yet, new and big colliders definitely needed to tell most of the story.

Minimal composite

Agashe, Contino, Pomarol

$$SO(5)/SO(4) \to 4 \text{ GBs}$$
$$U = \exp\left(i\sqrt{2}\frac{\pi^a}{f}T^a\right) \quad T^a = \begin{pmatrix} 0 & X_a \\ -X_a & 0 \end{pmatrix} \quad \Sigma_i = U_{i5}$$

$$\frac{1}{2}(D_{\mu}\Sigma)^{2} \supset \frac{1}{2}(\partial h)^{2} + \frac{1}{2}m_{V}^{2}V_{\mu}^{2}\left(1 + 2\sqrt{1 - \frac{v^{2}}{f^{2}}}\frac{h}{v} + \cdots\right)$$

First prediction: deviation in Higgs coupling
 \rightarrow important constraints

$$\begin{split} \Gamma(\eta \to t\bar{t}) &= \frac{N_c}{8\pi} \frac{m_t^2}{\Lambda_f^2} m_\eta \sqrt{1 - \frac{4m_t^2}{m_\eta^2}}, \\ \Gamma(\eta \to b\bar{b}) &= \frac{N_c}{8\pi} \frac{m_b^2}{\Lambda_f^2} m_\eta \sqrt{1 - \frac{4m_b^2}{m_\eta^2}}, \\ \Gamma(\eta \to gg) &= \frac{1}{2\pi} \left(\frac{\alpha_s}{4\pi}\right)^2 \frac{m_\eta^3}{\Lambda_f^2} \left| A_-(\tau) + 2c_g \frac{\Lambda_f}{\Lambda_g} \right|^2, \\ \Gamma(\eta \to \gamma\gamma) &= \frac{1}{4\pi} \left(\frac{\alpha}{4\pi}\right)^2 \frac{m_\eta^3}{\Lambda_f^2} \left| N_c Q_t^2 A_-(\tau) + 2c_\gamma \frac{\Lambda_f}{\Lambda_g} \right|^2, \end{split}$$

Partial compositeness

composite fermion with the same gauge quantum numbers as SM fermion.

$$\mathcal{L}_{\rm pc} = -m_{\Psi} \bar{\Psi} \Psi + y_L f(\bar{q}_L \Psi + h.c.) - y_R f(\bar{u}_R \Psi + h.c.)$$

$$\sin\phi_{L,R} \equiv \frac{y_{L,R}}{\sqrt{(m_{\Psi}/f)^2 + y_{L,R}^2}}.$$

- Mixing angles not completely fixed.
- For top quark, the mixing should be large, O(1).
 - ▶ Top quark heavy because it is composite.
- Less so for light quark and lepton.

$$U(\Pi) = \exp\left(\frac{i}{f}(\widehat{H} + \eta T_{\eta} + \ldots)\right),$$

$$y_t \overline{t_L} h t_R \left(1 + i\kappa_\eta \frac{\eta}{f} + \mathcal{O}\left(\frac{1}{f^2}\right) \right) + h.c.$$

$$c_{\eta} \frac{N_c y_R^2}{4\pi^2} m_*^2 \eta^2 + \cdots \qquad y_t \simeq \frac{f}{m_*} y_L y_R$$

$$m_\eta^2 \simeq \frac{N_c y_t}{2\pi^2} \frac{m_*^3}{f}$$

Composite Higgs at lepton collider

Higgs is not (quite) elementary, will have deviations in Higgs couplings.

$$\delta W_h \sim \delta Z_h \sim \frac{v^2}{f^2}$$

Composite resonances couples to W and Z.Will give rise to deviation in EW precision observables.

$$S \simeq \frac{N}{4\pi} \frac{v^2}{f^2}$$

Experiment	S~(68%)	$f \; ({\rm GeV})$
ILC	0.012	$1.1 { m TeV}$
CEPC (opt.)	0.02	$880 {\rm GeV}$
CEPC (imp.)	0.014	$1.0 { m TeV}$
TLEP- Z	0.013	$1.1 { m TeV}$
TLEP-t	0.009	$1.3 { m TeV}$

A clear big step above the LHC.

Composite Higgs at lepton collider

Higgs is not (quite) elementary, will have deviations in Higgs couplings.

$$\delta W_h \sim \delta Z_h \sim \frac{v^2}{f^2}$$

Composite resonances couples to W and Z.Will give rise to deviation in EW precision observables.

$$S\simeq \frac{N}{4\pi}\frac{v^2}{f^2}$$

	,	,	т	Experiment	S (68%)	f (GeV)
Experiment	κ_Z (68%)	f (GeV)	_	ILC	0.012	1.1 TeV
HL-LHC	3%	1.0 TeV		CEPC (opt.)	0.02	880 GeV
ILC500	0.3%	3.1 TeV			0.014	$10 \text{ T}_{2}\text{V}$
ILC500-up	0.2%	3.9 TeV		CEPC (imp.)	0.014	1.0 Iev
CEPC	0.2%	3.9 TeV		TLEP- Z	0.013	1.1 TeV
TLEP	0.1%	5.5 TeV		TLEP-t	0.009	1.3 TeV

A clear big step above the LHC.