

An investigation of the HERA combined data at low Q²

Submitted to PRD [arXiv:1604.02299]

I. Abt, A. Cooper-Sarkar, B. Foster, V. Myronenko, K. Wichmann, M. Wing

> Low x meeting Károly Róbert College, Gyöngyös, Hungary 2016

Low Q² data in HERAPDF2.0

Eur.Phys.J.C75 (2015) 12, 580 [arxiv:1506.06042]

- DGLAP data description gets worse at low scales.
- The case is observed for various orders of calculation & HF schemes.
- Q²_{min} = 3.5 GeV²
 <u>HERAPDF2.0</u>

NLO
$$\frac{\chi^2}{ndf} = \frac{1356}{1131} \approx 1.20$$

NNLO
$$\frac{\chi^2}{ndf} = \frac{1363}{1131} \approx 1.21$$

Low Q² data in HERAPDF2.0

Eur.Phys.J.C75 (2015) 12, 580 [arxiv:1506.06042]

Data between Q² = 3.5 GeV² and Q² = 15 GeV² create one third of the excess χ²/d.o.f.

Two thirds originate from the data with Q² > 150 GeV² (fluctuations)

Is cutting harder an option?!

Low Q² data in HERAPDF2.0

Higher-twist correction

The problem might be in absence of higher twist consideration in evolution equations

May be visualized as gluon leaders with recombining gluons

$$\sigma_{r,NC}^{\pm} = F_2 - \frac{y^2}{Y_{\perp}} F_L$$

 $\sigma_{r,NC}^{\pm} = F_2 - \frac{y^2}{Y} F_L$ Cross section — a linear combination of structure functions

- Introduce simple correction factors to each of structure functions
- Higher twist terms expected to contribute to F₁

$$F_L \frac{4\pi^2 \alpha}{Q^2 (1-x)} = \sigma_L$$

...and cancel in F₂

$$F_2 \frac{4\pi^2 \alpha}{Q^2 (1-x)} = \sigma_T + \sigma_T$$

$$F_{2}^{HT} = F_{2}^{DGLAP} \left(1 + \frac{A_{2}^{HT}}{Q^{2}}\right)$$

$$F_{L}^{HT} = F_{L}^{DGLAP} \left(1 + \frac{A_{L}^{HT}}{Q^{2}}\right)$$

Higher-twist correction effect

NLO
$$\frac{\chi^2}{ndf} = \frac{1356}{1131} \approx 1.20$$

NNLO
$$\frac{\chi^2}{ndf} = \frac{1363}{1131} \approx 1.21$$

• Introducing $F_2^{HT} = F_2^{DGLAP} \left(1 + \frac{A_2^{HT}}{O^2}\right)$ gives almost no effect:

NLO
$$\frac{\chi^2}{ndf} = \frac{1354}{1130} \approx 1.20$$

NLO
$$\frac{\chi^2}{ndf} = \frac{1354}{1130} \approx 1.20$$
 $A_2^{\text{HT}} = 0.14 \pm 0.10 \text{ GeV}^2$

NNLO $\frac{\chi^2}{ndf} = \frac{1357}{1130} \approx 1.20$
 $A_2^{\text{HT}} = 0.12 \pm 0.07 \text{ GeV}^2$

$$A_2^{HT} = 0.14 \pm 0.10 \text{ GeV}^2$$

$$A_2^{HT} = 0.12 \pm 0.07 \text{ GeV}^2$$

corr. factors consistent with 0

$$\clubsuit$$
 Introducing $F_{L}^{\rm HT}\!=\!F_{L}^{\rm DGLAP}(1\!+\!\frac{A_{L}^{\rm HT}}{Q^{2}})$ helps a lot more:

NLO
$$\frac{\chi^2}{ndf} = \frac{1329}{1130} \approx 1.18$$

HHT@F_L

$$NLO \frac{\chi^2}{ndf} = \frac{1329}{1130} \approx 1.18$$

$$\Delta \chi^2 = 27$$

$$\Delta \chi^2 = 27$$

$$\Delta \chi^2 = 47$$

$$\Delta \chi^2 = 47$$

$$A_L^{HT} = 4.2 \pm 0.7 \text{ GeV}^2$$

$$A_L^{HT} = 5.5 \pm 0.6 \text{ GeV}^2$$

$$\Delta \chi^2 = 27$$

$$\Delta \chi^2 = 47$$

$$A_{I}^{HT} = 4.2 \pm 0.7 \text{ GeV}^2$$

$$A_{I}^{HT} = 5.5 \pm 0.6 \text{ GeV}^2$$

Higher-twist correction effect

Q²_{min} dependence flattens significantly

and PDFs almost do not change!

NLO
$$\frac{\chi^2}{ndf} = \frac{1329}{1130} \approx 1.18$$
NNLO $\frac{\chi^2}{ndf} = \frac{1316}{1130} \approx 1.16$

$$\Delta \chi^2 = 27$$

$$\Delta \chi^2 = 47$$

$$A_L^{HT} = 4.2 \pm 0.7 \text{ GeV}^2$$

 $A_L^{HT} = 5.5 \pm 0.6 \text{ GeV}^2$

Higher-twist correction effect

Q²_{min} dependence flattens significantly

and it also does within various HF schemes!

FONLL scheme:

- ightharpoonup Not much of a gain @NLO (F_L^{FONLL} O(α_s))
- ightharpoonup Substantial improvement @NNLO (F_L^{FONLL} O(α_S^2))

HHT: data description

HHT: data description

What about the fitting data over $Q^2_{min} = 2 \text{ GeV}^2$ then?

$$Q_{\min}^{2} = 3.5 \text{ GeV}^{2}$$

$$NLO \frac{\chi^{2}}{ndf} = \frac{1329}{1130} \approx 1.18$$

$$NNLO \frac{\chi^{2}}{ndf} = \frac{1316}{1130} \approx 1.16$$

NLO
$$\frac{\chi^2}{ndf} = \frac{1329}{1130} \approx 1.18$$

NNLO
$$\frac{\chi^2}{ndf} = \frac{1316}{1130} \approx 1.16$$

$$A_{L}^{HT} = 4.2 \pm 0.7 \text{ GeV}^2$$

$$A_{L}^{HT} = 5.5 \pm 0.6 \text{ GeV}^2$$

$$Q^2_{min} = 2 \text{ GeV}^2$$

NLO
$$\frac{\chi^2}{ndf} = \frac{1398}{1170} \approx 1.19$$

NLO
$$\frac{\chi^2}{ndf} = \frac{1398}{1170} \approx 1.19$$
 $A_L^{HT} = 4.0 \pm 0.6 \text{ GeV}^2$
NNLO $\frac{\chi^2}{ndf} = \frac{1381}{1170} \approx 1.18$ $A_L^{HT} = 5.2 \pm 0.7 \text{ GeV}^2$

$$A_{I}^{HT} = 4.0 \pm 0.6 \text{ GeV}^2$$

$$A_{i}^{HT} = 5.2 \pm 0.7 \text{ GeV}^{2}$$

- Excellent data description!
- Although χ^2 /dof is somewhat higher

HHT: data description

What about the fitting data over $Q^2_{min} = 2 \text{ GeV}^2$ than?

HHT: prediction components

σ predictions do great job! What are the constituents of this?

$$\sigma_{r,NC}^{\pm} = F_2 - \frac{y^2}{Y_{+}} F_L \left(1 + \frac{A_L^{HI}}{Q^2} \right)$$

- F₂ looks reasonable as well
- Prediction describes extracted F₂ well.

$$F_2^{extr} = F_2^{pred} \frac{\sigma_r^{meas}}{\sigma_r^{pred}}$$

How about F₂?..

HHT: F, structure function

Eur.Phys.J.C 74 (2014) 2814 [arXiv:1312.4821]

Current study:

- Way smaller uncertainties
- F_L from HHT is larger both @ NLO and NNLO
- F_L@NNLO shows a dramatic upturn at low Q²

Previous studies:

- Large uncertainties
- Predictions indicate very similar behavior

HHT: F, structure function

$$xg(x,Q^2) \approx 1.77 \frac{3\pi}{2\alpha_S(Q^2)} F_L(x,Q^2)$$

F_L wants to be larger

F_L is directly related to gluon PDF

...can try to drop negative gluon term in xg parametrization

$$xg(x) = A_g x_g^B (1-x)_g^C - A_g' x_g^B (1-x)_g^C$$

HHT@NNLO
$$\frac{\chi^2}{ndf} = \frac{1316}{1130} \approx 1.16$$

HHT_{AG} NNLO
$$\frac{\chi^2}{ndf} = \frac{1350}{1132} \approx 1.20$$

HERAPDF2.0_{AG}@NNLO
$$\frac{\chi^2}{ndf} = \frac{1385}{1132} \approx 1.22$$

Negative gluon term is definitely needed!

HHT: prediction components

Another perspective: data at constant W and various Q²:

Discrepancies observed at low x => should appear at high W

 $\stackrel{\bullet}{\Rightarrow}$ HHT describes F_2^{extr} more successfully

$$F_{2/L}^{extr} = F_{2/L}^{pred} \frac{\sigma_r^{meas}}{\sigma_r^{pred}}$$

- Also Golec-Biernat, Wusthoff dipole model is shown:
 - GBW agrees well with HHT at region of applicability.
 - GBW and HHT start to disagree when either excedes its relevant region

HHT: F, structure function

$$F_L^{extr} = F_L^{pred} \frac{\sigma_r^{meas}}{\sigma_r^{pred}}$$
 is highly model dependent

Direct measurements of F_L exist:

Eur.Phys.J.C 74 (2014) 2814 [arXiv:1312.4821]

- Model independent data does not show any upturn at low Q²
- More investigations required for proper F, predictions

Summary

- ♦ HHT successfully describe inclusive ep cross sections data down to Q² ~ 2 GeV²
- \clubsuit Addition of HT corrections flattens $\chi^2(Q^2)$ dependence substantially
- + HT correction does not change PDFs much
- F_L from HHT demonstrates unphysical upturn at low scales

The HHT approach might be too simplistic therefore requires more studies.

Backup not necessarily useful...

HERA collider

$$E_P = 920 (460,575) GeV$$

 $E_e = 27.5 GeV$
 $\sqrt{s} = 318(225,252) GeV$

Experimental achievements:

~ 0.5fb⁻¹ DIS data from each experiment

PDFs for the precision measurements

Factorisation theorem: PDFs + hard-scattering cross section

$$\sigma_{A \to C}^{i}(q, p) = \sum_{a}^{1} \int_{r}^{1} d\xi f_{A}^{a}(\xi, \mu) \hat{\sigma}_{a \to C}^{i}(q, \xi p, \mu, \alpha_{s})$$

PDFs are **universal** => essential for precision measurements.

- HERA data is a core of every PDF determination
 - Covers wide kinematic range
 - Probes linear combination of quarks.
 - Sensitive to the quark flavor decomposition (CC).
 - Information on the gluon content of proton

HERAPDF1.0

HERAPDF1.5

HERAPDF2.0

Data Set		x _{Bj} Grid		$Q^2[\text{GeV}^2]$ Grid		£	e ⁺ /e ⁻	\sqrt{s}
		from	to	from	to	pb-1		GeV
HERA I E_p = 820 GeV and E_p = 920 GeV data sets								
H1 svx-mb	95-00	0.000005	0.02	0.2	12	2.1	e ⁺ p	301, 319
H1 low Q ²	96-00	0.0002	0.1	12	150	22	e ⁺ p	301, 319
H1 NC	94-97	0.0032	0.65	150	30000	35.6	e ⁺ p	301
H1 CC	94-97	0.013	0.40	300	15000	35.6	e ⁺ p	301
H1 NC	98-99	0.0032	0.65	150	30000	16.4	e ⁻ p	319
H1 CC	98-99	0.013	0.40	300	15000	16.4	e ⁻ p	319
H1 NC HY	98-99	0.0013	0.01	100	800	16.4	e ⁻ p	319
H1 NC	99-00	0.0013	0.65	100	30000	65.2	e^+p	319
H1 CC	99-00	0.013	0.40	300	15000	65.2	e^+p	319
ZEUS BPC	95	0.000002	0.00006	0.11	0.65	1.65	e ⁺ p	300
ZEUS BPT	97	0.0000006	0.001	0.045	0.65	3.9	e^+p	300
ZEUS SVX	95	0.000012	0.0019	0.6	17	0.2	e ⁺ p	300
ZEUS NC	96-97	0.00006	0.65	2.7	30000	30.0	e ⁺ p	300
ZEUS CC	94-97	0.015	0.42	280	17000	47.7	e ⁺ p	300
ZEUS NC	98-99	0.005	0.65	200	30000	15.9	e ⁻ p	318
ZEUS CC	98-99	0.015	0.42	280	30000	16.4	e ⁻ p	318
ZEUS NC	99-00	0.005	0.65	200	30000	63.2	e ⁺ p	318
ZEUS CC	99-00	0.008	0.42	280	17000	60.9	e ⁺ p	318
HERA II $E_p = 920 \text{GeV}$ data sets								
H1 NC 1.5p	03-07	0.0008	0.65	60	30000	182	e ⁺ p	319
H1 CC 1.5p	03-07	0.008	0.40	300	15000	182	e ⁺ p	319
H1 NC 1.5p	03-07	0.0008	0.65	60	50000	151.7	e^-p	319
H1 CC 1.5p	03-07	0.008	0.40	300	30000	151.7	e^-p	319
H1 NC med Q2 *y.5	03-07	0.0000986	0.005	8.5	90	97.6	e^+p	319
H1 NC low $Q^2 *y.5$	03-07	0.000029	0.00032	2.5	12	5.9	e^+p	319
ZEUS NC	06-07	0.005	0.65	200	30000	135.5	e ⁺ p	318
ZEUS CC 1.5p	06-07	0.0078	0.42	280	30000	132	e ⁺ p	318
ZEUS NC 1.5	05-06	0.005	0.65	200	30000	169.9	e ⁻ p	318
ZEUS CC 1.5	04-06	0.015	0.65	280	30000	175	e ⁻ p	318
ZEUS NC nominal *y	06-07	0.000092	0.008343	7	110	44.5	e^+p	318
ZEUS NC satellite *y	06-07	0.000071	0.008343	5	110	44.5	e^+p	318
HERA II $E_p = 575 \text{GeV}$ data sets								
H1 NC high Q ²	07	0.00065	0.65	35	800	5.4	e ⁺ p	252
H1 NC low Q^2	07	0.0000279	0.0148	1.5	90	5.9	e^+p	252
ZEUS NC nominal	07	0.000147	0.013349	7	110	7.1	e ⁺ p	251
ZEUS NC satellite	07	0.000125	0.013349	5	110	7.1	e ⁺ p	251
HERA II $E_p = 460 \text{GeV}$ data sets								
H1 NC high Q2	07	0.00081	0.65	35	800	11.8	e ⁺ p	225
H1 NC low Q^2	07	0.0000348	0.0148	1.5	90	12.2	e ⁺ p	225
ZEUS NC nominal	07	0.000184	0.016686	7	110	13.9	e ⁺ p	225
ZEUS NC satellite	07	0.000143	0.016686	5	110	13.9	e^+p	225

All inclusive DIS results are final and published!

HERAPDF2.0: settings for QCD fit

- QCD fits are performed using HERAFitter package
- ightharpoonup PDFs (14p) are parametrised at $Q_0^2 = 1.9 \text{ GeV}^2$

$$xg(x) = A_{g}x^{B_{g}}(1-x)^{C_{g}} - A'_{g}x^{B'_{g}}(1-x)^{C'_{g}},$$

$$xu_{v}(x) = A_{u_{v}}x^{B_{u_{v}}}(1-x)^{C_{u_{v}}}\left(1+E_{u_{v}}x^{2}\right),$$

$$xd_{v}(x) = A_{d_{v}}x^{B_{d_{v}}}(1-x)^{C_{d_{v}}},$$

$$x\bar{U}(x) = A_{\bar{U}}x^{B_{\bar{U}}}(1-x)^{C_{\bar{U}}}(1+D_{\bar{U}}x),$$

$$x\bar{D}(x) = A_{\bar{D}}x^{B_{\bar{D}}}(1-x)^{C_{\bar{D}}}.$$

- A_{u_x} , A_{d_x} , A_g are constrained by QCD sum rules
- $A_{\bar{u}} \stackrel{x \to 0}{\to} x \bar{d}$ $A_{\bar{u}}$, $A_{\bar{D}}$ are constrained via $x \bar{s} = f_s x \bar{D}$
- PDF evolution is performed using DGLAP equations
- Heavy flavour coeffitients are obtained within GM VFNS (RT OPT)

$$\chi^{2} = \sum_{i} \frac{\left[\mu_{i} - m_{i} \left(1 - \sum_{j} \gamma_{j}^{i} b_{j}\right)\right]^{2}}{\delta_{i, \, uncor}^{2} m_{i}^{2} + \delta_{i, \, stat}^{2} \mu_{i} m_{i} \left(1 - \sum_{j} \gamma_{j}^{i} b_{j}\right)} + \sum_{j} b_{j}^{2} + \sum_{i} \ln \frac{\delta_{i, \, uncor}^{2} m_{i}^{2} + \delta_{i, \, stat}^{2} \mu_{i} m_{i}}{\delta_{i, \, uncor}^{2} \mu_{i}^{2} + \delta_{i, \, stat}^{2} \mu_{i}^{2}}$$

6.06.2016 | Volodymyr Myronenko | Low x 2016 | An investigation of the HERA combined data at low Q²

6.06.2016 | Volodymyr Myronenko | Low x 2016 | An investigation of the HERA combined data at low Q²