

Discussion of QCD aspects of multi-boson production measured with the ATLAS detector

Dimos Sampsonidis

Aristotle University of Thessaloniki

On behalf of the ATLAS Collaboration

Low-x Meeting 2016, 6-11 June 2016 Károly Róbert College, Gyöngyös, Hungary

Introduction

Multi-boson production measurements :

- Diboson (ZZ, WZ, WW, Wγ, Zγ)
- Triboson (Wγγ, Zγγ)

Physics Motivations:

- important test of Standard Model (SM) predictions at TeV scale
 - EWK precision measurements with higher order corrections
- understand background for many (Higgs, BSM, ...) analyses
- explore new heavy particles decaying to diboson
- probe new physics through deviations of measured cross sections from predictions (anomalous couplings)

Production Cross section Estimation

$$\begin{split} N_{sigal} = & N_{data} - N_{bkg} = & L \cdot \sigma^{tot} \cdot BR \cdot A \cdot C \\ A = & \frac{N_{MC,gen}^{fid}}{N_{MC,gen}^{tot}} & \text{Acceptance correction} \\ \text{for the geometrical \&} \end{split}$$

$$C = \frac{N_{Reco}^{Selected}}{N_{MC,gen}^{fid}}$$

for the geometrical & kinematic criteria

Efficiency correction for detector ability to reconstruct these objects

N_{signal}	Number of signal events	
N _{data}	Number of data events	
$N_{\scriptscriptstyle bkg}$	Number of background events	
\boldsymbol{L}	Luminosity	
BR	Branching Ratio	
C	Efficiency corrections	
\overline{A}	Acceptance	

$$\sigma^{fiducial} = \frac{N_{obs} - N_{bkg}}{L \cdot C}$$

We measure a "fiducial cross section" corresponding to the reduced phase-space of the actual measurement

$$\sigma^{tot} = \frac{N_{obs} - N_{bkg}}{L \cdot BR \cdot A \cdot C}$$

We then extrapolate to the "total cross section"

- Background estimation from Data or/and MC
- Differential distributions in key kinematical variables
- Systematic Uncertainties from Data/MC

Dibosons

ZZ @ 13 TeV

13 TeV ATLAS event display Event display for the $ZZ\rightarrow$ ee + $\mu\mu$ candidate event

ZZ @13TeV

ZZ → *llll* channel (eeee, eeμμ, μμμμ)

ArXiv:1512.05314 Phys. Rev. Lett. 116, 101801 (2016)

Event selection

- Exactly four isolated, $\Delta R(l, l) > 0.2$,
- prompt final state leptons (e or μ only)
- All four leptons $p_T > 20 \text{ GeV } \& |\eta| < 2.7$
- Opposite Charge (OC), Same Flavor (SF) pairing
- On-shell mass selection
 66 GeV < |m _n | < 116 GeV
- When 4 leptons SF: select the pairings minimizing $|m_{1.2} m_Z| + |m_{3.4} m_Z|$

The precision on the measurement is dominated by statistics

- NNLO: qqbar \rightarrow ZZ \rightarrow 41
- NLO: gg →ZZ →4I
- interference with Higgs production and off-shell Higgs ->ZZ production is taken into account
- Maximum-likelihood fit.
- Signal and background yields treated as Poisson variables.
- Systematic uncertainties treated as Gaussian nuisance parameters

ZZ @13TeV

Phys. Rev. Lett. 116, 101801 (2016)

	Measurement	$\mathcal{O}(\alpha_{\mathrm{s}}^2)$ prediction	
$\sigma^{\text{fid}}_{ZZ\to e^+e^-e^+e^-}$ $\sigma^{\text{fid}}_{ZZ\to e^+e^-\mu^+\mu^-}$ $\sigma^{\text{fid}}_{ZZ\to \mu^+\mu^-\mu^+\mu^-}$ $\sigma^{\text{fid}}_{ZZ\to \ell^+\ell^-\ell'^+\ell'^-}$	$8.4^{+2.4}_{-2.0}(\text{stat.}) \stackrel{+0.4}{_{-0.2}}(\text{syst.}) \stackrel{+0.5}{_{-0.3}}(\text{lumi.}) \text{ fb}$ $14.7^{+2.9}_{-2.5}(\text{stat.}) \stackrel{+0.6}{_{-0.4}}(\text{syst.}) \stackrel{+0.9}{_{-0.6}}(\text{lumi.}) \text{ fb}$ $6.8^{+1.8}_{-1.5}(\text{stat.}) \stackrel{+0.3}{_{-0.3}}(\text{syst.}) \stackrel{+0.4}{_{-0.3}}(\text{lumi.}) \text{ fb}$ $29.7^{+3.9}_{-3.6}(\text{stat.}) \stackrel{+1.0}{_{-0.8}}(\text{syst.}) \stackrel{+1.7}{_{-1.3}}(\text{lumi.}) \text{ fb}$	$\begin{array}{c} 6.9^{+0.2}_{-0.2} \text{ fb} \\ 13.6^{+0.4}_{-0.4} \text{ fb} \\ 6.9^{+0.2}_{-0.2} \text{ fb} \\ 27.4^{+0.9}_{-0.8} \text{ fb} \end{array}$	NNLO calc.
$\sigma_{ZZ}^{ ext{tot}}$	$16.7 ^{+2.2}_{-2.0}(\text{stat.}) ^{+0.9}_{-0.7}(\text{syst.}) ^{+1.0}_{-0.7}(\text{lumi.}) \text{pb}$	$15.6^{+0.4}_{-0.4} \text{ pb}$	

Measured fiducial cross-section vs $O(\alpha_s^2)$ Prediction

Total cross section NLO prediction compared to measurements for different center of mass energies at p-pbar and pp collisions

pp **→**4l @ 8TeV

Contributions to the m₄₁:

- LO: non resonant gg→4ℓ.
- NLO QCD: qq→4ℓ.
- NNLO QCD+NLO EW: H→4ℓ
 on-shell qq→Z→4ℓ

Extract gg component $\sigma(LO)$ in $m_{4\ell}$ >180 GeV region.

$$\sigma_{\text{LO}}^{gg \to ZZ} = 0.97^{+0.3}_{-0.2} \text{ fb}, \qquad \sigma_{\text{NLO}}^{gg \to ZZ} = 1.8^{+0.2}_{-0.2} \text{ fb}$$
 $\mu_{gg} = \sigma(\text{data})/\sigma(\text{LO})$

$$\mu_{gg} = 2.4 \pm 1.0 \text{ (stat.)} \pm 0.5 \text{ (syst.)} \pm 0.8 \text{ (theory)}$$

arXiv:1509.06734, Physics Letter B753 (2016) 552-527

$W^{\pm}Z$ @ 8TeV

$WZ \rightarrow lv \ ll \ channel \ (eee, ee\mu, \mu\mu e, \mu\mu\mu)$

Event selection

- Three isolated charged leptons
- Lepton p_T>15 GeV

Z selection

- 2 OC SF leptons
- | m_{2l} m_Z | < 10 GeV
- W selection
- Lepton p_T> 20 GeV,
- m_⊤(W) >30 GeV

Background

Reducible: 1fake lepton (Z+j, Zγ, tt, and WW) Irreducible: all prompt leptons (ZZ, tt+V, VVV, tZ(j))

Main systematic is the background estimation method (data driven)

arXiv:1603.02151 Phys. Rev. D 93, 092004 (2016)

Signal MC prediction is scaled by a global factor of 1.17 to match the measured data

$$\sigma_{\mathbf{W}^{\pm}\mathbf{Z} \to \ell' \nu \ell \ell}^{\text{fid.}} = 35.1 \pm 0.9 \text{ (stat.)} \pm 0.8 \text{ (sys.)} \pm 0.8 \text{ (lumi.) fb.}$$

NLO MC $\sigma = 30.0 \pm 2.1$ fb

WZ production rate is higher than MC NLO calculation

$W^{\pm}Z$ @13TeV

- NLO SM prediction from POWHEG+PYTHIA with μ_R = 0.5·m_{WZ} and CT10 PDF
- Same deviation (\sim 1.3 σ) from NLO prediction as observed in Runl

NNLO 14% higher than NLO → compatible to measurements

$W^{\pm}Z$ @13TeV

- Comparison of previous results vs √s to MCFM(NLO) predictions
- ATLAS results in excellent agreement with NNLO predictions

Differential W[±]Z @13TeV

Differential cross-section vs N_{iets}

- All 4 channels added together
- Jets with $p_T > 25$ GeV, $|\eta| < 4.5$
- Unfolded distribution (Bayesian iterative)

Data in good agreement with Sherpa

$W^+W^- \rightarrow lvlv \ (a) \ 8 \ TeV$

 $W^+W^- \rightarrow lv \ lv \ channel \ (ee, e\mu, \mu\mu) + E_T^{miss}$

arXiv:1603.01702 submitted to JHEP

Event Selection:

- 2 opposite sign high p_T leptons
- High E_t^{miss}
- Additional lepton veto, top veto, Jet veto, Z veto, etc
- incl. Higgs → WW as signal

Dominant systematic from modeling of signal efficiency (Jets)

Backgrounds:

 top, drell-yan. W+jets (data driven) other dibosons (MC based)

The dominant top-quark background is suppressed by requiring 0-jets

$W^+W^- \rightarrow lvlv \ (a) \ 8 \ TeV$

arXiv:1603.01702 submitted to JHEP

σ(total) (pb)

Data $71.1^{+1.1}_{-1.1}(\text{stat}) ^{+5.7}_{-5.0}(\text{syst}) ^{+1.4}_{-1.4}(\text{lumi})$ NNLO $63.2^{+1.6}_{-1.4}(\text{scale}) \pm 1.2(\text{PDF})$

Consistent within 1.4 standard deviations

Comparison of the measured fiducial cross sections with various theoretical predictions

$W^+W^- \rightarrow lvlv \ (a), 8 \text{ TeV}$

arXiv:1603.01702 submitted to JHEP

Ζγ @ 8ΤεV

arXiv:1604.05232, accepted by PRD

OC SF lepton pair $\gamma E_{T} > 15 \text{ GeV}$

for the aTGC search $\gamma p_T > 250 \text{ GeV [ll} \gamma \text{ channel]}$ $\gamma p_T > 400 \text{ GeV [vv} \gamma \text{ channel]}$

The measured and predicted cross sections as a function of N_{jets} in the extended fiducial region.

measured cross sections and the theory predictions in the inclusive Njets ≥ 0 and exclusive Njets = 0 extended fiducial regions.

Zγ @ 8TeV

arXiv:1604.05232, accepted by PRD

The measured and predicted differential cross sections as a function of $m_{ll\gamma}$ in the inclusive Njets ≥ 0 and exclusive Njets = 0 extended fiducial regions

Tri-boson Production

Wγγ @ 8 TeV

Final state:

Isolated lepton $p_T>20GeV + E_{tmiss} + two photons$

N_j≥0 : inclusive N_i=0 : exclusive

Backgrounds:

- multijet (data driven)

- prompt leptons (MC)

	$\sigma^{ m fid}$ [fb]	$\sigma^{ m MCFM}$ [fb]
Inclusive $(N_{\text{jet}} \ge 0)$		
μνγγ	7.1 $^{+1.3}_{-1.2}$ (stat.) ± 1.5 (syst.) ± 0.2 (lumi.)	
$ev\gamma\gamma$	7.1 $^{+1.3}_{-1.2}$ (stat.) ± 1.5 (syst.) ± 0.2 (lumi.) 4.3 $^{+1.8}_{-1.6}$ (stat.) $^{+1.9}_{-1.8}$ (syst.) ± 0.2 (lumi.) 6.1 $^{+1.1}_{-1.0}$ (stat.) ± 1.2 (syst.) ± 0.2 (lumi.)	(2.90 ± 0.16)
$\ell \nu \gamma \gamma$	$6.1 \stackrel{hl.1}{-1.0}$ (stat.) ± 1.2 (syst.) ± 0.2 (lumi.)	
Exclusive $(N_{\text{jet}} = 0)$		
$\mu \nu \gamma \gamma$	$3.5 \pm 0.9 \text{ (stat.)} ^{+1.1}_{-1.0} \text{ (syst.)} \pm 0.1 \text{ (lumi.)}$	
$ev\gamma\gamma$	$3.5 \pm 0.9 \text{ (stat.)} ^{+1.1}_{-1.0} \text{ (syst.)} \pm 0.1 \text{ (lumi.)}$ $1.9 ^{+1.4}_{-1.1} \text{ (stat.)} ^{+1.1}_{-1.2} \text{ (syst.)} \pm 0.1 \text{ (lumi.)}$ $2.9 ^{+0.8}_{-0.7} \text{ (stat.)} ^{+1.0}_{-0.9} \text{ (syst.)} \pm 0.1 \text{ (lumi.)}$	1.88 ± 0.20
$\ell \nu \gamma \gamma$	$2.9_{-0.7}^{+0.8}$ (stat.) $^{+1.0}_{-0.9}$ (syst.) ± 0.1 (lumi.)	

- Combined significance over background : 3.6σ
- Consistent with SM, within 2σ for inclusive (less than 1σ exclusive)
- May have better agreement with NNLO
- Exclusive cross section, m(γγ)>300GeV used for aQGC limits

Ζγγ @ 8 ΤεV

arXiv:1604.05232, accepted by PRD

Final state:

Isolated leptons m_{II}>40GeV

two isolated photons E_T>15 GeV

 E_T^{miss} >100GeV (for the vvyy)

 $N_j \ge 0$: inclusive

N_i=0 : exclusive

Statistically limited

Channel	Measurement [fb]	MCFM Prediction [fb]	
$N_{ m jets} \ge 0$			
$e^+e^-\gamma\gamma$	$6.2^{+1.2}_{-1.1}(\text{stat.}) \pm 0.4(\text{syst.}) \pm 0.1(\text{lumi.})$		
$\mu^+\mu^-\gamma\gamma$	$3.83^{+0.95}_{-0.85}(\text{stat.})^{+0.48}_{-0.47}(\text{syst.}) \pm 0.07(\text{lumi.})$	$3.70^{+0.21}_{-0.11}$	
$\ell^+\ell^-\gamma\gamma$	$5.07^{+0.73}_{-0.68}(\text{stat.})^{+0.41}_{-0.38}(\text{syst.}) \pm 0.10(\text{lumi.})$		
$\nu\bar{\nu}\gamma\gamma$	$2.5^{+1.0}_{-0.9}(\text{stat.}) \pm 1.1(\text{syst.}) \pm 0.1(\text{lumi.})$	$0.737^{+0.039}_{-0.032}$	
$N_{ m jets} = 0$			
$e^+e^-\gamma\gamma$	$4.6^{+1.0}_{-0.9}(\text{stat.})^{+0.4}_{-0.3}(\text{syst.}) \pm 0.1(\text{lumi.})$		
$\mu^+\mu^-\gamma\gamma$	$2.38^{+0.77}_{-0.67}(\text{stat.})^{+0.33}_{-0.32}(\text{syst.})^{+0.05}_{-0.04}(\text{lumi.})$	$2.91^{+0.23}_{-0.12}$	
$\ell^+\ell^-\gamma\gamma$	$3.48^{+0.61}_{-0.56}(\text{stat.})^{+0.29}_{-0.25}(\text{syst.}) \pm 0.07(\text{lumi.})$		
$\nu\bar{\nu}\gamma\gamma$	$1.18^{+0.52}_{-0.44}(\text{stat.})^{+0.48}_{-0.49}(\text{syst.}) \pm 0.02(\text{lumi.})$	$0.395^{+0.049}_{-0.037}$	

Exclusive cross section, m(γγ)>300 (200) GeV used for aQGC limits for the *ννγγ (llγγ)* channel.

Anomalous Couplings

- The non-abelian nature of the EWK sector of the SM predicts the self-interaction of gauge bosons in the form of triple and quartic couplings
- Deviations from SM are parametrized, in terms of anomalous couplings using effective Lagrangian (SM+higher dimension operators)

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{SM}} + \sum_{d} \sum_{i} rac{c_{i}^{(d)}}{\Lambda^{d-4}} \mathcal{O}_{i}^{(d)}$$

Λ: scale of New Physics

coupling	parameters	channel
$WW\gamma$	$\lambda_{\gamma}, \Delta k_{\gamma}$	$WW, W\gamma$
WWZ	$\lambda_Z, \Delta k_Z, \Delta g_1^Z$	WW, WZ
$ZZ\gamma$	h_{3}^{Z}, h_{4}^{Z}	$Z\gamma$
$Z\gamma\gamma$	$h_3^{\gamma}, h_4^{\gamma}$	$Z\gamma$
$Z\gamma Z$	f_{40}^{Z}, f_{50}^{Z}	ZZ
ZZZ	$f_{40}^{\gamma},f_{50}^{\gamma}$	ZZ

- Anomalous couplings can manifest as increase cross sections and modification of kinematic distributions compared with SM predictions
- The SM predictions should be known to high precision.

Limits on aTGC W[±]Z @ 8TeV

The Powheg+Pythia MC prediction for the SM W±Z signal contribution.

Predictions with nonzero values of some of the anomalous coupling parameters by the dashed and dotted-dashed lines, respectively.

Limits on aQGC Zyy @ 8TeV

Limits for ft5 and ft9 were obtained in ATLAS and CMS

Summary table ATLAS

WZ cross-section higher than NLO prediction (8 TeV) → in 13 TeV NNLO nessecery !!!

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults

Summary of aTGC Limits

https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsSMPaTGC

Charged aTGC for WWZ vertex

Neutral aTGC ZZy and ZZZ

- September 2015 Ldt Channel Limits [-4.3e-02, 4.3e-02] 7 TeV WW 4.6 fb⁻¹ ww [-6.0e-02, 4.6e-02] 8 TeV 19.4 fb⁻¹ WV [-9.0e-02, 1.0e-01] 4.6 fb⁻¹ 7 TeV W٧ [-4.3e-02, 3.3e-02] 5.0 fb⁻¹ 7 TeV LEP Comb. [-7.4e-02, 5.1e-02] 0.20 TeV 0.7 fb⁻¹ WW [-6.2e-02, 5.9e-02] 4.6 fb 7 TeV [-4.8e-02, 4.8e-02] 4.9 fb⁻¹ 7 TeV ww [-2.4e-02, 2.4e-02] 8 TeV ww 19.4 fb⁻¹ WΖ [-4.6e-02, 4.7e-02] 4.6 fb⁻¹ 7 TeV W۷ [-3.9e-02, 4.0e-02] 4.6 fb⁻¹ 7 TeV WV 7 TeV [-3.8e-02, 3.0e-02] 5.0 fb⁻¹ D0 Comb. [-3.6e-02, 4.4e-02] 8.6 fb⁻¹ 1.96 TeV LEP Comb. [-5.9e-02, 1.7e-02] 0.20 TeV 0.7 fb⁻¹ 7 TeV ww [-3.9e-02, 5.2e-02] 4.6 fb⁻¹ Δg_1^Z ww [-9.5e-02, 9.5e-02] 4.9 fb⁻¹ 7 TeV [-4.7e-02, 2.2e-02] 8 TeV ww 19.4 fb⁻¹ W7 [-5.7e-02, 9.3e-02] 4.6 fb⁻¹ 7 TeV WV [-5.5e-02, 7.1e-02] 7 TeV 4.6 fb⁻¹ [-3.4e-02, 8.4e-02] 1.96 TeV D0 Comb. 8.6 fb LEP Comb. [-5.4e-02, 2.1e-02] 0.7 fb⁻¹ 0.20 TeV 0.2 0.4 aTGC Limits @95% C.L.
 - Stringent 95% CL Limits, and agree with SM prediction
 - Limits similar or (way) better than previous experiments at Tevatron (D0) and at LEP.

Summary

Large set of ATLAS results from the analysis of multi boson final states have been presented.

- Diboson
 - Most measured cross-sections agree with SM predictions (compared to calculations with NNLO QCD corrections)
 - NNLO calculations agree much better with the measurements
 - NNLO QCD calculations are needed
 - Differential measurements consistent with SM prediction
 - Explored aTGC with good sensitivities
- Triboson
 - Starting probe triple boson physics including aQGC
 - NNLO QCD calculations may also needed

Looking forward on LHC Run 2

Thank you!

Backup Slides

$WW/WZ \rightarrow lvjj$ (semileptonic)

Event Selection one high P_T , isolated lepton $E_T^{miss} > 30$ GeV, $M_T > 40$ GeV

Backgrounds:

- W/Z+jets: ~89% (data driven)
- multi-jets: ~5% (data driven)
- top: ~4% (MC)

Total bkg modeled w/ combined LH fit

 Measured (tot. comb.) [pb]
 68 ±7(stat.)±19(sys.)

 Theory pred. [pb]
 61.1±2.2

agreement w/ SM → limits on aTGC couplings

Multiboson cross section

Summary of aTGC limits

Summary of aQGCs at LHC

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

No deviation from SM so far

VBS Production

Phys. Rev. Lett. 113, 141803 (2014)

VBS pp → W[±]W[±]ii (1st evidence of VBS diboson production)

VBS topology: 2 bosons with two high momentum, forward jets Jets well separated in rapiity

- Same charge WWjj scattering (VBS) is a key process to experimentally probe the SM nature of EWSB
- WWjj production process classification

WWjj-strong

- Pure EWK WWjj production (VBS contribution)
- Strong + Ewk WWjj production (inclusive)
- W±W± has the best ratio of $\sigma(VVjj-Ewk)/\sigma(VVjj-strong)$

VBS W[±]W[±]jj @8TeV

- Final states: \(\ell\text{t}\text{v}\ell\text{t}\text{v} + \(\ell\text{jj}\) (\(\ell\text{e}=\eta,\mu\))
- Main backgrounds:
 - WZ+2jets , Wy+2jets: estimated from MC
 - tt(bar) and single Z production through charge misidentification : estimated from data

Events

Systematics dominated by jet energy scale and WZ+2jets normalization

measurement of EW + strong production selected with high di-jet mass

VBS W[±]W[±]jj @8TeV

	Measurement [fb]	Theory [fb] (PowhegPythia8)	measurement significance
Inclusive	2.1 ± 0.5(stat) ± 0.3(syst)	1.5 ± 0.11	4,5
Ewk-only	1.3 ± 0.4(stat) ± 0.2(syst)	0.95 ± 0.06	3,6

First evidence for EWK VV → VV scattering !
Measurements consistent with prediction

VBS: WZjj @ 8 TeV

arXiv:1603.02151, submitted to Phys. Rev. D.

SHERPA is used for the SM WZjj-QCD and WZjj-EW predictions

Zγ @ 8TeV

arXiv:1604.05232, accepted by PRD

 $E_T(\gamma)$ distributions are used for aTGC limit setting

aTGCs ZZ @7 TeV, 4.6 fb⁻¹

- aTGC contribution not the same across phase-space
- Use event yield as function of single kinematical variables.
 full 7 TeV result, 4.6 fb⁻
- $p_T(Z)$
- m(ZZ) system

Effect of aTGCs most significant in high pT / mass values

