# Dipole model BGK analysis of the new HERA I+II data

Agnieszka Łuszczak

Krakow University of Technology and DESY Hamburg



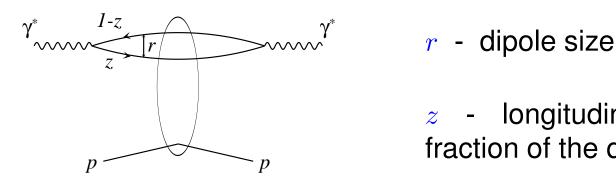


in collaboration with Henri Kowalski (DESY)

24th Low-x Meeting KRF, Gyöngyös, Hungary, June 6-11 2016



#### Introduction


- Motivation: Investigation of the gluon density with BGK dipole model, as an alternative to the PDF approach. BGK dipole model, uses a very similar evolution scheme as PDFs, i.e. DGLAP evolution in the kt factorization scheme (in contrast to the collinear factorization for PDFs).
- The analysis was done in the xFitter framework.

### **Outline**

- Dipole model approach.
- GBW and BGK parametrization of dipole cross section.
- Results of the fits from BGK dipole model
- Comparision with HERA data.
- Predictions for FL function.
- Summary.

## **Dipole model of DIS**

Dipole picture of DIS at small x in the proton rest frame



- z longitudinal momentum fraction of the quark/antiquark

Factorization: dipole formation + dipole interaction

$$\sigma^{\gamma p} = \frac{4\pi^2 \alpha_{em}}{Q^2} F_2 = \sum_f \int d^2 r \int_0^1 dz \, |\Psi^{\gamma}(r, z, Q^2, m_f)|^2 \, \hat{\sigma}(r, x)$$

Dipole-proton interaction

$$\hat{\sigma}(r,x) = \sigma_0 (1 - \exp\{-\hat{r}^2\})$$
  $\hat{r} = r/R_s(x)$ 

### **Dipole cross section**

BGK (Bartels-Golec-Kowalski) parametrization

$$\hat{\sigma}(r,x) = \sigma_0 \left\{ 1 - \exp\left[-\pi^2 r^2 \alpha_s(\mu^2) x g(x,\mu^2) / (3\sigma_0)\right] \right\}$$

- $\mu^2 = C/r^2 + \mu_0^2$  is the scale of the gluon density
- $\mu_0^2$  is a starting scale of the QCD evolution.  $\mu_0^2 = Q_0^2$
- gluon density is evolved according to the LO or NLO DGLAP eq.
- soft gluon:

$$xg(x, \mu_0^2) = A_g x^{\lambda_g} (1-x)^{C_g}$$

soft + hard gluon:

$$xg(x, \mu_0^2) = A_q x^{\lambda_g} (1 - x)^{C_g} (1 + D_q x + E_q x^2)$$

soft + negative gluon:

$$xg(x,\mu_0^2) = A_g x^{\lambda_g} (1-x)^{C_g} - A'_g x^{\lambda'_g} (1-x)^{C'_g}$$

#### Results of the Fits

## Dipole model BGK fit with and without valence quarks

1.1 BGK NLO fit with valence quarks for  $\sigma_r$  for HERA1+2-NCep-460, HERA1+2-NCep-575, HERA1+2-NCep-820, HERA1+2-NCep-920 and HERA1+2-NCem in the range  $Q^2 \ge 3.5 \text{ GeV}^2$  and  $Q^2 \ge 8.5 \text{ and } x \le 0.01$ . Soft gluon.

| No | $Q^2$         | HF Scheme | $\sigma_0$ | $A_g$ | $\lambda_g$ | Cg     | cBGK | Np  | $\chi^2$ | $\chi^2/Np$ |
|----|---------------|-----------|------------|-------|-------------|--------|------|-----|----------|-------------|
| 1  | $Q^2 \ge 3.5$ | RT OPT    | 85.111     | 1.857 | -0.12596    | 11.339 | 4.0  | 568 | 605.29   | 1.07        |
| 2  | $Q^2 \ge 8.5$ | RT OPT    | 72.451     | 2.015 | -0.1185     | 12.682 | 4.0  | 482 | 495.44   | 1.03        |

BGK NLO fit without valence quarks for  $\sigma_r$  for HERA1+2-NCep-460, HERA1+2-NCep-575, HERA1+2-NCep-820, HERA1+2-NCep-920 and HERA1+2-NCem in the range  $Q^2 > 3.5$  GeV<sup>2</sup> and  $Q^2 > 8.5$  and x < 0.01. Soft gluon.

| No | $Q^2$         | HF Scheme | $\sigma_0$ | $A_g$ | $\lambda_g$ | Cg    | cBGK | Np  | $\chi^2$ | $\chi^2/Np$ |
|----|---------------|-----------|------------|-------|-------------|-------|------|-----|----------|-------------|
| 1  | $Q^2 \ge 3.5$ | RT OPT    | 85.111     | 2.075 | -0.093      | 4.989 | 4.0  | 568 | 592.46   | 1.04        |
| 2  | $Q^2 \ge 8.5$ | RT OPT    | 123.31     | 1.997 | -0.0975     | 4.655 | 4.0  | 482 | 479.37   | 0.99        |

#### **Results of the Fits**

### Dipole model BGK fit with fitted valence quarks

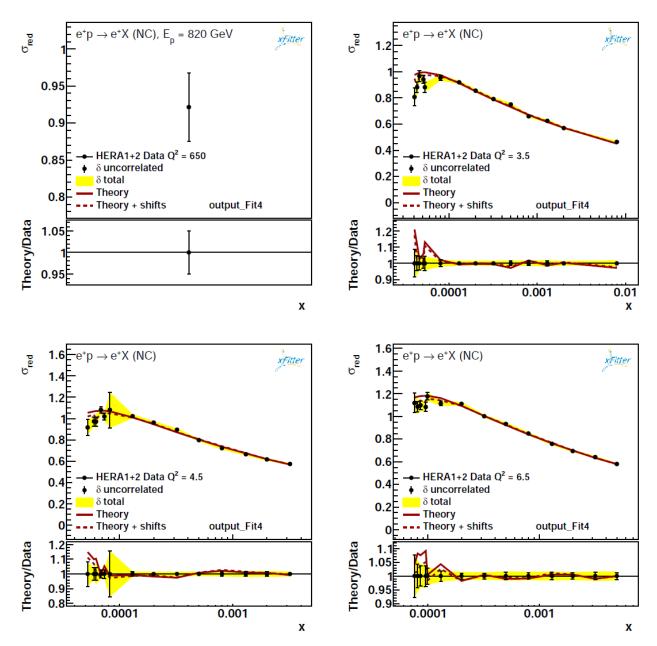
1.3 BGK NLO fit with fitted valence quarks for  $\sigma_r$  for HERA1+2-NCep-460, HERA1+2-NCep-575, HERA1+2-NCep-820, HERA1+2-NCep-920 and HERA1+2-NCem in the range  $Q^2 > 3.5 \text{ GeV}^2$  and  $Q^2 > 8.5 \text{ and } x < 0.01$ . Soft gluon.

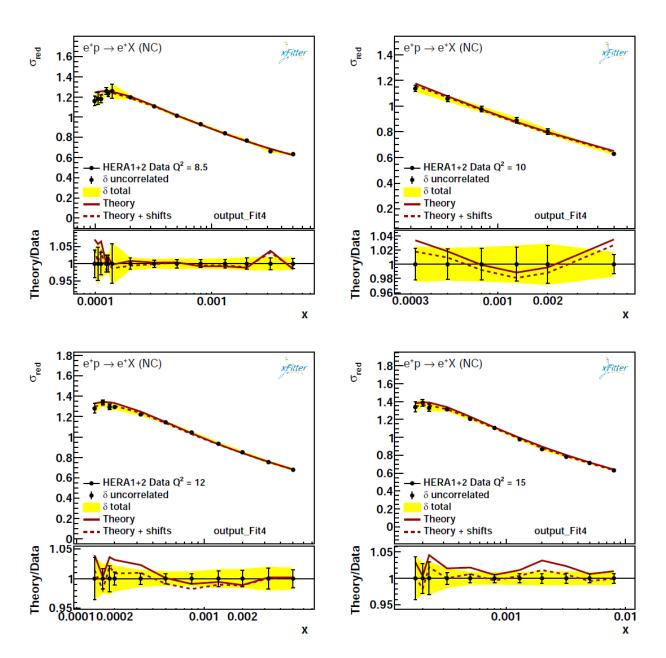
| No | $Q^2$         | HF Scheme | $\sigma_0$ | $A_g$ | $\lambda_g$ | Cg    | cBGK | Np  | $\chi^2$ | $\chi^2/Np$ |
|----|---------------|-----------|------------|-------|-------------|-------|------|-----|----------|-------------|
| 1  | $Q^2 \ge 3.5$ | RT OPT    | 85.111     | 1.921 | -0.103      | 4.674 | 4.0  | 557 | 575.30   | 1.03        |
| 2  | $Q^2 \ge 8.5$ | RT OPT    | 93.581     | 1.665 | -0.124      | 6.066 | 4.0  | 473 | 476.71   | 1.01        |

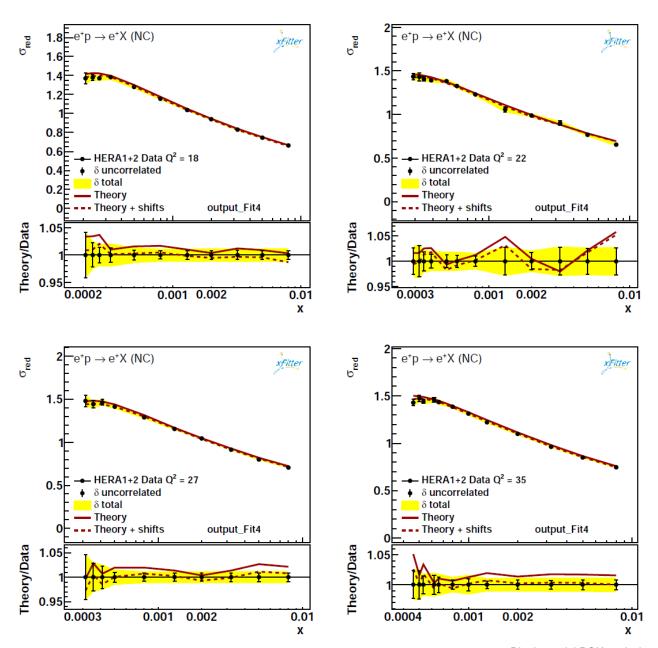
## HERAPDF fit with fitted valence quarks

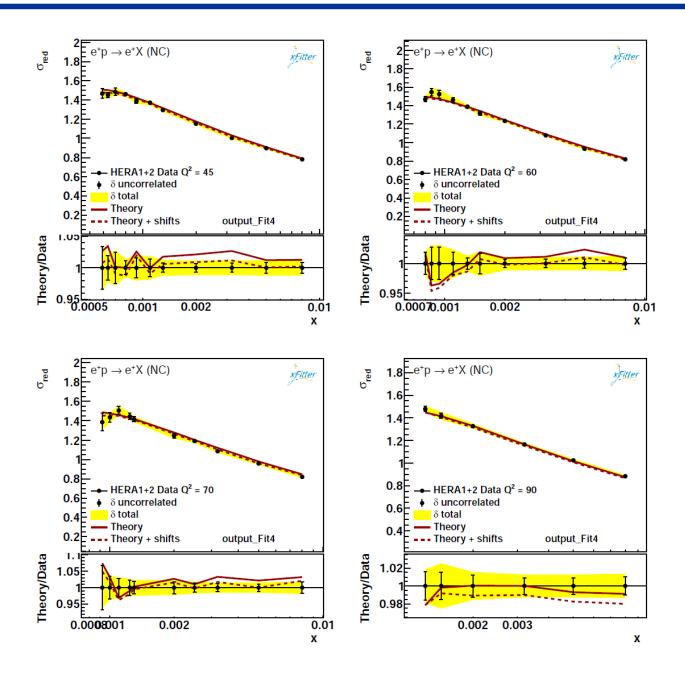
1.4 HERAPDF NLO fit with fitted valence quarks for  $\sigma_r$  for HERA1+2-NCep-460, HERA1+2-NCep-575 HERA1+2-NCep-820, HERA1+2-NCep-920, HERA1+2-NCem, HERA1+2-CCep and HERA1+2-CCem data in the range  $Q^2 > 3.5$  and  $Q^2 > 8.5$  and x < 1.0.

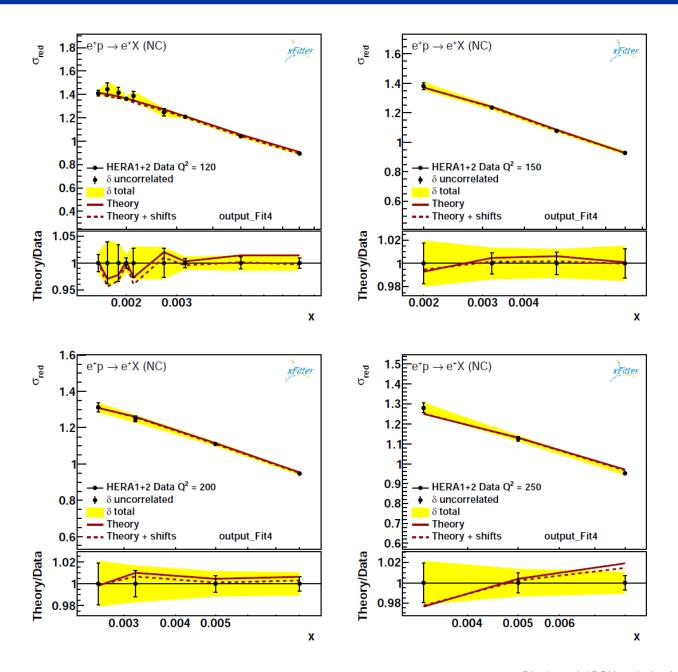
| No | $Q^2$         | HF Scheme | Np   | $\chi^2$ | $\chi^2/Np$ |
|----|---------------|-----------|------|----------|-------------|
| 1  | $Q^2 \ge 3.5$ | RT        | 1131 | 1356.70  | 1.20        |
| 2  | $Q^2 \ge 8.5$ | RT        | 456  | 470.88   | 1.15        |


### **Results of the Fits**


- $m_{u,d,s} = 140 \; MeV$ ,  $m_c = 1.3 \; GeV$
- $\hat{\sigma}(r,x) = \sigma_0 \left\{ 1 \exp\left[-\pi^2 r^2 \alpha_s(\mu^2) x g(x,\mu^2)/(3\sigma_0)\right] \right\} \text{ with saturation}$ 
  - BGK NLO fit without valence quarks for  $\sigma_r$  for HERA1+2-NCep-460, HERA1+2-NCep-575, HERA1+2-NCep-820, HERA1+2-NCep-920 and HERA1+2-NCem in the range  $Q^2 > 3.5 \text{ GeV}^2$  and x < 0.01. Soft gluon.

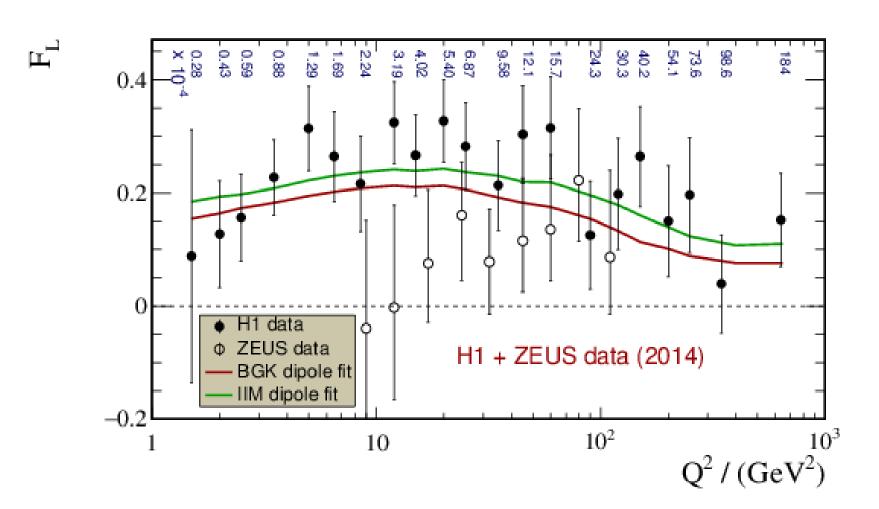

| No | $Q^2$         | $Q_0 = eBGK$ | $\sigma_0$ | $A_g$  | $\lambda_g$ | Cg     | cBGK | Np  | $\chi^2$ | $\chi^2/Np$ |
|----|---------------|--------------|------------|--------|-------------|--------|------|-----|----------|-------------|
| 1  | $Q^2 \ge 3.5$ | $Q_0 = 1.1$  | 0.143E+07  | 2.3921 | 0.0137      | 4.3512 | 4.0  | 535 | 540.54   | 1.01        |
| 2  | $Q^2 \ge 3.5$ | $Q_0 = 1.5$  | 474.14     | 2.4536 | -0.0354     | 5.7561 | 4.0  | 535 | 545.63   | 1.02        |
| 3  | $Q^2 \ge 3.5$ | $Q_0 = 1.9$  | 270.16     | 2.4788 | -0.0663     | 6.9093 | 4.0  | 535 | 567.10   | 1.06        |


- $\hat{\sigma}(r,x) = \sigma_0 \left[ \pi^2 r^2 \alpha_s(\mu^2) x g(x,\mu^2) / (3\sigma_0) \right]$  without saturation
  - BGK NLO fit without valence quarks for  $\sigma_r$  for HERA1+2-NCep-460, HERA1+2-NCep-575, HERA1+2-NCep-820, HERA1+2-NCep-920 and HERA1+2-NCem in the range  $Q^2 \ge 3.5 \text{ GeV}^2$  and  $x \le 0.01$ . Soft gluon.


| No | $Q^2$         | $Q_0 = eBGK$ | $\sigma_0$ | $A_g$  | $\lambda_g$ | Cg     | cBGK | Np  | $\chi^2$ | $\chi^2/Np$ |
|----|---------------|--------------|------------|--------|-------------|--------|------|-----|----------|-------------|
| 1  | $Q^2 \ge 3.5$ | $Q_0 = 1.1$  | 118.34     | 2.3918 | 0.0137      | 4.3505 | 4.0  | 535 | 540.53   | 1.01        |
| 2  | $Q^2 \ge 3.5$ | $Q_0 = 1.5$  | 118.34     | 2.1287 | -0.0441     | 4.3064 | 4.0  | 535 | 568.78   | 1.06        |
| 3  | $Q^2 \ge 3.5$ | $Q_0 = 1.9$  | 118.34     | 2.0861 | -0.0721     | 4.6379 | 4.0  | 535 | 632.78   | 1.18        |












### **Predictions for FL**

Predictions from BGK and IIM dipole models fits to FL function



# **Summary**

- BGK dipole fits (with saturation) describe the final, high precision HERA data with x < 0.01, very well:
- Little sensitivity to valence quarks contribution observed
- BGK fits seems not indicate sizable saturation effects:
  - $\chi^2/Np \to 1.18$  for  $Q_0 = 1.9 \; GeV^2$  and  $Q^2 > 3.5 \; GeV^2$

## Dipole scattering amplitude with GBW parametrization

lacktriangle GBW parametrization with heavy quarks f=u,d,s,c

$$\hat{\sigma}(r,x) = \sigma_0 \left( 1 - \exp(-r^2/R_s^2) \right), \qquad R_s^2 = 4 \cdot (x/x_0)^{\lambda} \text{ GeV}^2$$

The dipole scattering amplitude in such a case reads

$$\hat{N}(\mathbf{r}, \mathbf{b}, x) = \theta(b_0 - b) \left( 1 - \exp(-r^2/R_s^2) \right)$$

where

$$\hat{\sigma}(r,x) = 2 \int d^2b \, \hat{N}(\mathbf{r}, \mathbf{b}, x)$$

• Parameters  $b_0$ ,  $x_0$  and  $\lambda$  from fits of  $\hat{N}$  to  $F_2$  data

$$\lambda = 0.288$$
  $x_0 = 4 \cdot 10^{-5}$   $2\pi b_0^2 = \sigma_0 = 29 \text{ mb}$