Measurements of the production of jets in association with a W or Z boson with the ATLAS detector

Evelin Meoni

On behalf of the **ATLAS Collaboration**

24th Low-x Meeting KRF, Gyöngyös, Hungary, June 6-11 2016

Motivations

Jet production in association with a W/Z boson dominated by strong interactions:

- \rightarrow What do we learn from them?
 - Precision test of pQCD:
 - → test state-of-the-art NLO pQCD calculations
 - Background to SM measurements, Higgs and new Physics
 - → important validation of the Matrix Element (ME) + Parton Shower (PS) MCs
 - Impact on PDFs understanding

Production via purely electroweak processes rarer:

- \rightarrow What do we learn from them?
 - Probe triple gauge boson self-interactions
 - → Model independent approach to explore new physics (anomalous couplings)

- Understand irreducible background to Higgs and beyond-SM searches → Constrain MCs in VBF-like regions (extreme phase spaces)

Outline

Measurements presented today:

V+jets: detector level

Look at leptonic decays $Z \rightarrow \mu\mu/ee$; $W \rightarrow ev, \mu v$

Kinematical region with high efficiencies, good detector performances and low _____ backgrounds

Leptons: $p_T > 25$ GeV, $|\eta| < 2.4$ (μ)- 2.47 (e)

Z: $66 < m_{11} < 116 \text{ GeV}$

W: MET>25 GeV; m_T^W >40GeV

Jets: antiKt4, p_T>30 GeV, |y|<4.4 (7 TeV)- 2.5 (13 TeV), ΔR (1,j)>0.5

V+jets : particle level

V+jets: N_{jets}

Figure of merit of goodness of QCD predictions

Jet counting important discriminator with respect to the background in Higgs and searches

All predictions describe data up to 4/5 jets in 7 TeV analyses

Results confirmed at 13 TeV Good agreement also looking at multiplicity ratio (high precision measurement)

V+jets: Jet p_T

- Highly correlated to p_T of V boson V+1jet Higgs-strahlung - Modeling important for VH and some BMS searches: W/Z analysis done in different p_T^V ranges Jet -Measured for the first time jet p_T up to 1 TeV $p_{T}^{jet} = -p_{T}^{V}$ in W+jets@7TeV analysis Eur. Phys. J. C (2015) 75:82 ₩ BH+S Excl. Sum Fred. / Data 1 0.1 8.0 BH+S **NLO Calculations** At high p_T fixed order calculations 7 TeV (NLO and NNLO approx) TLAS 0.6 underestimate data Pred. / Data 7.1 8.0 8.0 LoopSim pprox. NNLO Calculations ME+PS MCs provide a better description of data but agreement far to be perfect 0.6 \rightarrow further tuning needed Pred. / Data 7.1 8.0 8.0 ALPGEN MC (ME+PS) Dominant More important at low p_T at high p_T 0.6 Pred. / Data 7.1 8.0 8.0 MC (ME+PS) Ζ SHERPA Ζ FPS@N 0.6 700 800 900 1000 500 600 100 200 300 400 p^j (leading jet) [GeV] 7

V+jets: H_T

Fixed order calculations don't describe data in the high range as expected Impressive improvement in MEPS@NLO (equivalent to Sherpa2.0) compared to Sherpa1

V+jets: $\Delta \phi_{ii}$ Important test of QCD and MC modeling: test hard radiation at large angles $\Delta \phi_{\text{dijet}}$ from matrix element and soft collinear radiation from PS Eur. Phys. J. C (2015) 75:82 ACKHAT+SHERPA Pred. / Data 7 TeV $\Delta 0 = \pi$.2 $W \rightarrow e\nu$ (MC) vs $W \rightarrow \ell\nu$ (data), dressed level $\mathrm{d}\sigma_{W+\geq 2j}/\mathrm{d}\Delta\phi_{j1,j2}$ 0.8 ATLAS data, $\sqrt{s}=7$ TeV ATLAS 10^{2} Sherpa 2.1 0.6 Sherpa 2.2 MG+Pv8 A F.1 Data 7.1 Data 8.0 Pata 8.0 Data HEJ approx. all orders MG+Py8 B aMC@NLO FxFx 0.6 ATL-PHYS-PUB-2016-003 10^{1} Pred. / Data 1 . 1 8.0 MC (ME+PS) ALPGEN 1.4 MC/Data 1.2 1 0.8 0.6 0.6 MC (ME+PS) SHERPA .4 2.5 0 0.5 1 1.5 2 3 [>]red. / Data $\Delta \phi_{i1,i2}$ 1.2 Sherpa1 showed evident mismodelling, 0.8 MEPS@NLO Sherpa 2.2 provides substantial improvement 0.6 0.5 1.5 2.5 3 2

ΔΦ

0

9

EW Zjj vs QCD Zjj

EW Z+2 jets production is ~1% of inclusive Z+2 jets cross section

EW Zjj: ∆y

Baseline region

Explore higher p_T and large ∆y
 → Include also EW component in MC to compare with data

Sherpa1 shows a large mismodelling

Powheg (NLO in pQCD) does a good job (typically used to describe VBF and ggF Higgs)

Extraction of EW signal

EW component extracted by a signal+background template fit of the dijet mass:

- Fit done in the search region (higher EW component)

- Background modelling (dominated by QCD Zjj) corrected using data/MC ratio in the **control region**

Background-only hypothesis rejected at greater than 5σ

Extracted cross sections in 2 search fiducial regions: 1) m_{jj} >250 GeV:

 $\begin{aligned} \sigma_{\rm EW,measured} &= 54.7 \pm 4.6 (\text{stat}) {}^{+9.8}_{-10.4} (\text{syst}) \pm 1.5 (\text{lumi}) \, \text{fb} \\ \sigma_{\rm theory} &= 46.1 \pm 0.2 (\text{stat}) {}^{+0.3}_{-0.2} (\text{scale}) \pm 0.8 (\text{PDF}) \pm 0.5 (\text{model}) \, \text{fb} \end{aligned}$

2) $m_{jj} > 1 \text{ TeV}$ (most sensitive to EW Zjj component): $\sigma_{EW,measured} = 10.7 \pm 0.9(\text{stat}) \pm 1.9(\text{syst}) \pm 0.3(\text{lumi}) \text{ fb}$ $\sigma_{\text{theory}} = 9.38 \pm 0.05(\text{stat}) \stackrel{+0.15}{_{-0.24}}(\text{scale}) \pm 0.24(\text{PDF}) \pm 0.09(\text{model}) \text{ fb}$

aTGC limits from EW Zjj

$$g_{1,Z}$$
, λ_Z , κ_Z (in SM : $g_{1,Z}=1$, $\lambda_Z=0$, $\kappa_Z=0$)

Set 95% confidence intervals on $g_{1,Z}$, λ_Z from counting number of events in search region with m_{jj} >1TeV for 2 unitarization scales

aTGC	$\Lambda=6~{ m TeV}~{ m (obs)}$	$\Lambda=6~{ m TeV}~({ m exp})$	$\Lambda = \infty ~({ m obs})$	$\Lambda = \infty \; (\exp)$
$\Delta g_{1,Z}$	[-0.65, 0.33]	[-0.58, 0.27]	[-0.50, 0.26]	[-0.45, 0.22]
λ_Z	[-0.22, 0.19]	[-0.19,0.16]	[-0.15, 0.13]	[-0.14, 0.11]

Not as stringent as limits set in diboson productions (~3 times smaller for λ_z in WZ) but complementary (2 Ws have space-like momentum transfer, while in diboson processes all 3 bosons have time-like momentum)

V+b-jets

V+HF less understood than V+light jets and affected by larger theoretical uncertainties:

- heavy-quark content in the proton
- massive vs massless b-quark
- modeling of gluon splitting
- Important bkg for VH(bb) and some BSM searches
- SM measurements crucial for the understanding of these processes

15

V+b-jets: strategy

Large scale uncertainty is a limit also for PDFs sensitivity:

A trend is visible in Z rapidity among different PDFs

Z+b-jets

Large mismodelling at small ΔR sensitive to gluon slitting Description improved in the most recent generators

Conclusions

Measurements of jet production in association with a V boson allow us to:

- Improve understanding of pQCD
- Improve understanding of MCs modeling in different kinematical regions important for many measurements and for searches
- Explore triple gauge boson coupling sensitive to new physics

ATLAS published a vast set of results in this contest in Run1, just as reminder:

- Evidence of EW Z+jets production
- Measurement of W+jets up to 7 jets and up to 1 TeV in p_T
- Measurement of Z+2 b-jets differential distributions and preliminary results with first Run-2 data @ 13 TeV also presented

A lot of new exiting results are coming soon with Run-1 and Run-2 data \rightarrow Stay tuned!

BACKUP

W+jets: Background estimation

Multijet backgroup

Template from data: Electron channel: Relaxed electron ID requirements

and anti-isolated electrons **Muon channel:** Anti-isolated muons <u>Fit on MET:</u> on data with QCD template + signal and other bkgs from MCs

Top background

ttbar template from data:

- Events with : >=3 jets, MET and MT cut and at least 1 b-jets
- Subtracted contamination from other processes (estimated with MC apart QCD estimated from data-driven)

Fit on transposed aplanarity

with ttbar template + other process estimated from MC (QDC from data-driven with norm fixed)

Tot_uncurtainty

~10%(3jets) - 20%(6jets)

Events / 0.02

W+jets: Signal and Background composition

						E	Eur. Phys. J. C (2015) 75:82	
N _{jet}	0	1	2	3	4	5	6	7
	$W \rightarrow e v$							
$W \rightarrow ev$	94 %	78%	73%	58%	37%	23%	14%	11%
Multijet	4%	11%	12%	11%	7%	6%	5%	4%
tī	<1%	<1%	3%	18%	46%	62%	76%	80%
Single top	<1%	<1%	2%	3%	4%	3%	2%	2%
$W \rightarrow \tau \nu$, diboson	2%	3%	3%	3%	2%	1%	1%	1%
$Z \rightarrow ee$	<1%	8%	7%	7%	5%	4%	3%	3%
Total predicted	11,100,000	1,510,000	354,000	89,500	28,200	8,550	2,530	572
	$\pm 640,000$	± 99,000	±23,000	$\pm 5,600$	$\pm 1,400$	± 440	± 200	±61
Data observed	10,878,398	1,548,000	361,957	91,212	28,076	8,514	2,358	618
	$W \rightarrow \mu \nu$							
$W \rightarrow \mu \nu$	93 %	82%	78%	62%	40%	25%	17%	11%
Multijet	2%	11%	10%	9%	7%	5%	4%	3%
tī	<1%	<1%	3%	19%	46%	64%	75%	83%
Single top	<1%	<1%	2%	3%	4%	3%	2%	2%
$W \rightarrow \tau \nu$, diboson	2%	3%	3%	3%	2%	1%	1%	<1%
$Z \rightarrow \mu \mu$	3%	4%	3%	3%	2%	1%	1%	1%
Total predicted	13,300,000	1,710,000	384,000	96,700	30,100	8,990	2,400	627
	$\pm 770,000$	$\pm 100,000$	±24,000	±6,100	$\pm 1,600$	± 480	± 180	±66
Data observed	13,414,400	1,758,239	403,146	99,749	30,400	9,325	2,637	663

W+jets: unfolding

Eur. Phys. J. C (2015) 75:82

Bayesian iterative unfolding:

- Response matrix to account for migrations with MC

 $M_{ij}=M(R_i | T_j)$ = conditional probability that the effect R_i is produced by the cause T_j

-Goal: determine the probability $M(T_j | R_i)$ \rightarrow Used Bayes' Theorem:

$$M(T_j|R_i) = \frac{M(R_i|T_j) \cdot P_0(T_j)}{\sum_{l=1}^{N_T} M(R_i|T_l) \cdot P_0(T_l)}$$

- Particle level MC used as an initial prior $(P_0(T_j))$ to determine a first estimate of the unfolded data distribution

$$T_j = \mathop{\overset{N_R}{\stackrel{}_{}_{}_{}_{}_{}}}_{i=1} M(T_j \mid R_i)R_i$$

- For each further iteration the estimator for the unfolded distribution from the previous iteration is used as a new input prior

V+jets uncertainties (1/2)

V+jets uncertainties (2/2)

13 TeV

ATLAS-CONF-2015-041

$\delta \sigma_{Z_{\rightarrow \ell^+ \ell^-}+ \geq N_{jets}} / \sigma_{Z_{\rightarrow \ell^+ \ell^-}+ \geq N_{jets}}$ (%)					
	$Z \rightarrow e^+e^-$				
Systematic source	$+ \ge 1$ jet	$+ \ge 2$ jets	$+ \ge 3$ jets	$+ \ge 4$ jets	
Electron Trigger	0.5	0.5	0.5	0.5	
Electron Reconstruction, Identification	5.2	6.0	6.8	7.8	
Electron Isolation	1.2	1.4	1.6	1.8	
Electron Scale and Resolution	0.4	0.5	0.4	0.7	
JES and JER	4.4	5.9	8.5	7.7	
Pileup	0.3	0.5	1.0	2.0	
Backgrounds	0.2	0.5	1.0	1.2	
Total	7.1	8.5	12.4	11.7	
		$Z \rightarrow$	$\mu^{+}\mu^{-}$		
Systematic source	$+ \ge 1$ jet	$+ \ge 2$ jets	$+ \ge 3$ jets	$+ \ge 4$ jets	
Muon Trigger	1.0	1.0	1.1	1.2	
Muon Reconstruction and Identification	0.9	1.0	1.0	1.2	
Muon Isolation	0.7	0.9	1.3	1.8	
Muon Scale and Resolution	0.2	0.2	0.3	0.6	
JES and JER	4.9	6.5	8.4	10.5	
Pileup	0.7	0.6	1.7	6.0	
Backgrounds	0.2	0.5	1.1	1.9	
Total	5.2	6.7	8.9	12.6	

W+jets: MCs and Calculation

Features	MC&Calculation	Comments
mP LO ME +PS	Alpgen (up to 5p)	Herwig (for PS and hadronisation)+Jimmy (for UE) and Photon (for QED rad), MLM matching scheme. CTEQ6L1 PDFs
mP LO ME +PS	Sherpa 1.X (up to 4p)	Its own PS and CKKW matching scheme and internal QED rad model (YFS method). CT10 PDFs
NLO ME+PS	MEPS@NLO (NLO for 1&2 jets)	Virtual ME for W+1 and W+2jets from BlackHat; merged to LO ME up to 4p; Final state matched and hadronised with Sherpa. CT10 PDF.
NLO ME+PS	Powheg (NLO up to 2jets)	Pythia6 (for PS+hadronisation+MPI), Perugia2011tune NLO up to 2 jets (MiNLO), LO up to 1 jets. CT10 PDFs
Fixed order NLO	BlackHat+Sherpa (NLO up 5 jets)	BH for the virtual element corrections and Sherpa for tree-level diagrams and for the phase-space integration. CT10 PDFs
Higher orders calc (with approx)	LoopSim (approx. NNLO)	-Approx. NNLO via merging of NLO samples with different multiplicity -It should provide predictions close to true NNLO when xs dominated by large contributions associated with new topologies appearing at NLO or beyond
Higher orders calc (with approx)	HEJ (approx. to all orders in α_s)	 Based on a perturbative calculation, approximation to the hard-scattering ME for Nj>=2 and to all orders in αs . Approximation exact in the limit of large rapidity separation between partons. Results presented at the parton level (the relevant hadronisation corrections not available). CT10 PDF

W+jets: Corrections to fixed order calculations

High precision test of pQCD (cancellation of exp. and theoretical systematics)

- Model independent sensitivity to new physics coupling with W or Z

-PDF sensitivity

EW Zjj : strategy of the measurement

2) Extract electroweak component cross section from "search region", constraining the modeling on the background (QCD Zjj) from the "control region"

3) Set limits on anomalous triple gauge couplings

EW Zjj: Detector Level

- QCD Zjj and EW Zjj with Sherpa (v1.4.3) normalized with Powheg
- WZ and ZZ with Sherpa
- ttbar and single top with MC@NLO+Herwig/Jimmy
- Multijets: data-driven

Sherpa describes adequately the data, apart some mismodelling at high m_{jj} and large angular separation

EW Zjj: fiducial regions and their composition

Object	baseline	high-mass	search	control	high- p_{T}
Leptons		$ \eta^{\ell} $	$ <2.47,~p_{\rm T}^\ell>25$ (GeV	
Dilepton pair		8	$31 \leq m_{\ell\ell} \leq 101 { m GeV}$	V	
	— $p_{\mathrm{T}}^{\ell\ell} > 20~\mathrm{GeV}$				—
Jets					
		$p_{\rm T}^{j_1} > 85~{\rm GeV}$			
	$p_{\mathrm{T}}^{j_2} > 45~\mathrm{GeV}$				$p_{\rm T}^{j_2} > 75~{\rm GeV}$
Dijet system	- $m_{jj} > 1$ TeV		$m_{jj} > 2$	250 GeV	_
Interval jets	_		$N_{\rm jet}^{\rm gap}=0$	$N_{\rm jet}^{\rm gap} \geq 1$	_
$\overline{Z} j j$ system	—		$p_{\rm T}^{\rm balance} < 0.15$	$p_{\rm T}^{\rm balance,3} < 0.15$	_

Jets in the gap counted if : p_T >25 GeV

$$p_{\rm T}^{\rm balance} = \frac{\left| \vec{p}_{\rm T}^{\ell_1} + \vec{p}_{\rm T}^{\ell_2} + \vec{p}_{\rm T}^{j_1} + \vec{p}_{\rm T}^{j_2} \right|}{\left| \vec{p}_{\rm T}^{\ell_1} \right| + \left| \vec{p}_{\rm T}^{\ell_2} \right| + \left| \vec{p}_{\rm T}^{j_1} \right| + \left| \vec{p}_{\rm T}^{j_2} \right|}.$$

	Composition (%)					
Process	baseline	$high-p_{\rm T}$	search	control	high-mass	
Strong Zjj	95.8	94.0	94.7	96.0	85	
Electroweak Zjj	1.1	2.1	4.0	1.4	12	
WZ and ZZ	1.0	1.3	0.7	1.4	1	
$t\bar{t}$	1.8	2.2	0.6	1.0	2	
Single top	0.1	0.1	< 0.1	< 0.1	< 0.1	
Multijet	0.1	0.2	< 0.1	0.2	< 0.1	
WW, W+jets	< 0.1	< 0.1	< 0.1	< 1.1	< 0.1	

EW Zjj: Jet Veto

Probe wide-angle quark and gluon radiation in QCD Zjj as a function energy scale of dijet system, for EW processes little jet activity in the gap \rightarrow QCD Zjj has more activity (larger N_{jets}^{gap}, smaller fraction of events without additional jets)

Sherpa describes data quite better than Powheg for variable sensitive to additional jets

EW Zjj: uncertainties (1/2)

33

EW Zjj: uncertainties (2/2)

JHEP04 (2014) 031

σ	_	$N_{\rm E}$	W
θEM	_	$\int L \mathrm{d}t$	$\cdot \mathcal{C}_{\mathrm{EW}}$

Source	$\Delta N_{\rm EW}$		$\Delta \mathcal{C}_{\mathrm{EW}}$			
	Electrons	Muons	Electrons	Muons		
Lepton systematics			$\pm 3.2~\%$	$\pm 2.5\%$		
Control region statistics	$\pm 8.9~\%$	± 11.2 %				
JES	$\pm 5.6~\%$		$^{+2.7}_{-3.4}$ %			
JER	$\pm 0.4~\%$		$\pm 0.8~\%$			
Pileup jet modelling	$\pm 0.3~\%$		$\pm 0.3~\%$			
JVF	$\pm 1.1~\%$		$^{+0.4}_{-1.0}~\%$			
Signal modelling	$\pm 8.9~\%$		$^{+0.6}_{-1.0}$ %			
Background modelling	$\pm 7.5~\%$		$\pm 7.5~\%$			-
Signal/background interference	$\pm 6.2~\%$			-		
PDF	$^{+1.}_{-3.9}$	5 %	± 0.1	. %		

EW Zjj: aTGC

Effective Lagrangian:

$$\frac{\mathcal{L}}{g_{WWZ}} = i \left[g_{1,Z} \left(W^{\dagger}_{\mu\nu} W^{\mu} Z^{\nu} - W_{\mu\nu} W^{\dagger\mu} Z^{\nu} \right) + \kappa_Z W^{\dagger}_{\mu} W_{\nu} Z^{\mu\nu} + \frac{\lambda_Z}{m_W^2} W^{\dagger}_{\rho\mu} W^{\mu}_{\nu} Z^{\nu\rho} \right]$$

in SM : $g_{1,Z}$ =1 , λ_Z =0, κ_Z =0

To avoid tree-level unitarity violation, the anomalous couplings must vanish as the partonic centre-of-mass energy(s^{\land}) approaches infinity \rightarrow An arbitrary form factor may be introduced:

$$a(\hat{s}) = rac{a_0}{(1+\hat{s}/\Lambda^2)^2}$$
 a_0 is the anomalous coupling at low energy.
 Λ is a unitarization scale

- Limits extracted in "search region" with m_{jj} >1 TeV to limit the effect of bkg modelling (900 events in data, 261 expected for EW Zjj and 592 for background estimated with the m_{jj} fit)

-aTGC and form factors varied with Sherpa

Z+b-jets: MCs & Calculations

MC&Calculation	Features	
MCFM	5FN NLO Z+b, Z+bb massless b-quarks	Run1
aMC@NLO 4FN	4FN NLO Z+bb, Z+b massive b-quark	Run1
aMC@NLO 5FN	NLO Z+b , LO Z+bb	Run1
Sherpa 1	5FN LO+PS, CT10 PDFs	Run1
Alpgen	4FN LO+PS, CTEQ6L1 PDFs	Run1
Madgraph	5FN LO+PS (A tuning uses NNPDF 2.3 B tuning uses NNPDF 3.0)	New for Run2
Sherpa 2	NLO up 2 jets, 5FN (Sherpa 2.1 uses NNPDF 2.3 Sherpa 2.2 uses NNPDF 3.0, improved tuning)	New for Run2
aMC@NLO FxFx	NLO up 2 jets, 5FN, NNPDF 2.3	New for Run2

Z+b-jets: uncertainties JHEP10(2014)141

Source of			ľ
uncertainty	$\sigma(Zb)$ [%]	$\sigma(Zbb)$ [%]	
b-jet tagging efficiency	3.4	9.8	
c-jet mistag rate	0.2	2.3	
light-jet mistag rate	0.4	0.6	
JES	2.9	4.7	
JER	0.3	0.7	
b-jet template shape	4.8	4.8	
c-jet template shape	0.2	0.6	Γ
light-jet template shape	0.9	0.9	
b-jet template scale factor	N/A	2.3	
MPI	2.5	0.8	
gluon splitting	1.2	1.5	
background normalisation	1.1	3.6	
$t\bar{t}$ modelling	0.0	2.9	
MC sample size	1.0	1.4	
lepton efficiency, scale and resolution	1.2	1.2	
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.1	0.6	
luminosity	1.8	1.8	
total	7.7	14.0	

W+b-jets

W+b-jets cross-section:

- 1 jet: "W+b"
- 2 jet: "W+b+j" and differential in b-jet p_T

7 TeV

W+c: PDFs sensitivity

- Sensitive to strange quark content in proton

-2 strategies:

W+c-jets (via soft muon tagged inside a jet)
 W[±]+D^(*)

Ratio of strange-to-down sea-quark distributions

7 TeV

In HERAPDF1.5 s-quark sea density lower than the d-quark sea density

ATLAS W+c data favour a symmetric light-quark sea in good agreement with the results obtained in the ATLAS W/Z analysis with 2010 data

39