

CMS-TOTEM Precision Proton Spectrometer

Laurent Forthomme (University of Kansas) on behalf of the CMS and TOTEM collaborations

Low-x workshop, Gyöngyös, Hungary

June 6-10, 2016

- Joint CMS-TOTEM project
- measurement of outgoing, scattered protons on both sides of the CMS interaction point ($z_{\rm CMS}\sim\pm~210$ m)
- Proton spectrometer using LHC magnets

(beamline optics response around CMS' IP (s = 0), Hector)

- 2 subdetector types:
 - timing components: pileup reduction
 - tracking detectors: measurement of protons momentum

Running in "production mode" with the tracking component since 3rd June!

- Study the colourless interactions, where large rapidity gaps are expected (e.g. the $\gamma\gamma$, $\gamma\mathbb{P}$, \mathbb{PP} processes)

- In particular, two-photon interactions:
 - Precision measurement of the $\gamma\gamma \to \ell^+\ell^-$ process
 - Search for anomalous behaviours of the $\gamma\gamma VV$ couplings (anomalous triple- and quartic gauge couplings)
 - Probe the 750 GeV two-photon mass region (e.g. arXiv:1512.05751)
- New resonances searches through CEPs
 - CoM system precisely known (overconstrained central system)
- LHC as a two-pomeron collider:
 - Study the pQCD behaviour of exclusive productions

Hints for an excess at $m_{\gamma\gamma} \simeq 750$ GeV in inclusive two-photon events

- Observed both in CMS (CMS-PAS-EXO-15-004) and ATLAS (ATLAS-CONF-2015-081) with data collected in 2015 at $\sqrt{s} = 13$ TeV

- \rightarrow December 2015/January 2016:
- decision to accelerate CT-PPS given this observation
- start of data taking in 2016 (originally foreseen for 2017)

The apparatus

- Horizontal Roman Pots (RPs) installed in the very forward regions
 - 2 for the tracking detectors (\sim 204 and 215 m)
 - 2 for the *timing* detectors (1 currently installed, 215 m)
- Tested in real beam conditions in 2015
 - Operating with no beam instabilities up to $4 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
 - No vacuum pressure, nor temperature issues encountered
 - Promising extrapolations to $\dot{\mathcal{L}}=10^{34}~\text{cm}^{-2}\text{s}^{-1}$ and low- σ
- Inserted in intensity ramp-up in May 2016
 - Successful insertions up to 1700 bunches intensities at 15σ (+ 0.5 mm margin)
 - Successful insertions with 49, 600, and 1700 bunches at 15σ (no margin)

In the tunnel

Requirement for radiation-hard, high-(timing/spatial) resolution detectors:

Radiation levels in the detector volume studied using TOTEM Run-1 data and simulations

Per 100 fb⁻¹:

- Proton flux up to 5×10^{15} cm⁻² in the pixel detectors
- -10^{12} neutron-equivalents $/cm^2$ and 100 Gy in off-beam readout electronics

Since Dec 2015/Jan 2016, two timescales defined for the installation of the detectors:

- Baseline components (mid- to long-term timescale)
 - R&D programme on both components still ongoing
- Accelerated programme
 - Use of TOTEM tracking and timing detectors
 - Closely following the 750 GeV bump
 - Approved by CMS and TOTEM Collaborations

- Accelerated plan: TOTEM silicon strip detectors
 - Sustain high trigger rates (lifetime: 10 to 20 fb⁻¹)
 - Already part of CMS data-taking
- 3D silicon pixels (PSI46dig readout chain, same as CMS Pixel Phase 1 upgrade)
 - 200 μ m thin edges for minimal beam distance of approach
 - radiation-hard (expected fluence: 5×10^{15} protons /cm²)
 - 6 planes in each station (tilted by 18.4°)
 - baseline: full spatial resolution under 30 μ m
 - Available in \sim fall 2016

- Accelerated plan: TOTEM diamond detectors
 - Hybrid design produced and tested in Jan-Feb 2016
 - $\sigma_t \sim$ 80 ps/plane \rightarrow combined timing resolution of \sim 50 ps with 4 planes
 - plane geometry optimised for increased spatial resolution ($\sim 150~\mu m$, optimum for $M_{\gamma\gamma} = 750 \text{ GeV}$
 - Currently being installed during TS1 (54 hours, starting this 7 Jun @ 6am GVA time...)

Several parallel R&D tracks:

- Ultra Fast Silicon Detectors
 - goal: 30 ps per plane for 50 μ m thickness
 - mature to be installed at the end of 2016
- QUARTIC (quartz Cherenkov detector)

- Grid of 4 \times 5 quartz bars, 3 \times 3 mm²
- Timing resolution (early TB): $\sigma_t \sim$ 30 ps (2 bars: \sim 20 ps)
- Readout: SiPM

 NINO discriminator

 HPTDC digitizer
- Other R&D projects: GasTof (gas Cherenkov detector), . . .

Reduction of the events pileup through addition of timing information on the outgoing two-proton system

- Relation between detectors timing resolution and longitudinal resolution:

$$\delta z_{pp} = \frac{c}{\sqrt{2}} \delta t \Rightarrow \left\{ egin{array}{l} \delta t = 30 \; \mathrm{ps}
ightarrow \delta z_{pp} \simeq 6 \; \mathrm{mm} \ \delta t = 10 \; \mathrm{ps}
ightarrow \delta z_{pp} \simeq 2 \; \mathrm{mm} \end{array}
ight.$$

Physics performances

- Full constraint of the central exclusive system kinematics through measurement of outgoing protons
- Proton kinematics:

$$-\xi \equiv \Delta p/p, \text{ and}$$

$$-t \equiv (p_{p,in}^{\mu} - p_{p,out}^{\mu})^2$$

- Acceptances, first tracking station, and timing detectors positions:

- Double-arm detector acceptance for $\gamma\gamma \to W^+W^-$ events ($|t|-\xi$ plane):
 - Events accepted in z>0 arm if detected in z<0 arm, for $d=15\sigma$ and 20σ distances of approach
 - LHC optics: $\beta^* = 0.6$ m (PPS TDR, 2014)

Central system acceptance and relative resolution as a function of its invariant mass:

- PPS efficiency > 5% for exclusive systems in mass range: $300 < M_X < 1700 \text{ GeV}$
- Mass resolution:
 - $-\sim 1.5\%$ at $M_X=500$ GeV
 - $\sim 1.2\%$ at $M_X=750$ GeV
- LHC optics: $\beta^* = 0.6$ m (PPS TDR, 2014)

Eg. 1: CE dijet production with the PPS

- Timing resolution: $\sigma_t = 10$ ps, average pileup multiplicity: $\mu = 25$
- Expected signal/background ratio: $\sim 1/3$

- CMS "Central detector" analysis details: see CMS Exclusive measurements talk this afternoon
 - Search for $pp \to p^{(*)}(\gamma\gamma \to W^+W^- \to e^{\pm}\mu^{\mp}\nu\bar{\nu})p^{(*)}$ events at the LHC
 - Major background sources: inclusive DY $\rightarrow W^+W^-, \tau^+\tau^-, \gamma\gamma \rightarrow \tau^+\tau^-$
- Addition of PPS timing and tracking information for pileup mitigation

- Up to 2 orders of magnitude improvements on the current Run-1 95% C.L. limits on Anomalous Quartic Gauge Couplings
 - Extracted with the $\gamma\gamma \to W^+W^-$ searches
 - 2 CT-PPS timing resolution scenarios covered: $\sigma_t=$ 30 and 10 ps

Anom. param.	No PPS	PPS, 30 ps	PPS, 10 ps
a_0^W/Λ^2	$[-0.9, 0.9] \times 10^{-4}$	±3 × 10 ⁻⁶	$\pm 2 \times 10^{-6}$
a_C^W/Λ^2	$[-3.6, 3.0] \times 10^{-4}$	$\pm 10 \times 10^{-6}$	$\pm 7 \times 10^{-6}$

Prospects for 2016 – . . .

Strong influence of LHC optics on PPS acceptance at $M_X = 750 \text{ GeV}$

- Post-LS1, 2016 optics optimisations resulted in significant loss of acceptance compared to the CT-PPS TDR expectations
- New LHC orbit configuration proposed to LHC machine coordination to increase the dispersion at RPs location ("mild" beam configuration)
- Higher rapidity reach expected with dispersion increase ($y_{\text{max}} = \ln \frac{M_X}{\xi_{\text{min}} \sqrt{s}}$)
 - RP approach needed to reach $y_{\rm max}=0.5$ ($\xi_{\rm min}=3.5\%$): before (left) vs after (right)

Light green/orange: Acceptance at 210-F and 220-C only

$$y=rac{1}{2}\lnrac{\xi_1}{\xi_2}, \ M_X=\sqrt{\xi_1\xi_2}\cdot\sqrt{s}$$

Plot: courtesy M. Deile

Zoom on double-arm acceptance region

$$y = \frac{1}{2} \ln \frac{\xi_1}{\xi_2},$$

$$M_X = \sqrt{\xi_1 \xi_2} \cdot \sqrt{s}$$

Plot: courtesy M. Deile

- Success data taking with RPs at 15σ with 1700 bunches
- Installation of diamond detectors in RPs during TS1
- Integration of detector readout in CMS Central DAQ (and DCS)
 - Integration of TOTEM Strips and Diamonds
- Integration of software in the full CMS simulation framework
 - TOTEM strips and track reconstruction
 - Timing detectors software
- Other areas being developed:
 - Data quality monitoring, alignment studies, calibration, online and offline databases

Same analysis scheme as 2015 inclusive $\gamma\gamma$ searches by CMS and ATLAS

Running conditions: $20 - 30 \text{ fb}^{-1}$ LHC luminosity expected in 2016, $\beta^* = 0.6 \text{ m}$

- Excl. $\gamma\gamma \to X(750) \to \gamma\gamma$ production cross-section fusion: $\sim 0.3 0.6$ fb (resonance dominantly produced in $\gamma\gamma$ fusion)
- Main background sources: incl. $\gamma\gamma+PU$ ($\lesssim 0.1$), incl. $\gamma+j/j+j$, excl. $\gamma\gamma$ $(< 10^{-4}), \gamma\gamma \rightarrow \gamma\gamma$ continuum, ...
- \rightarrow Few $(4-7) \sim \frac{\text{background-free}}{\text{free}}$ events expected in an early run

Figure source: PPS TDR

Combined CT-PPS $(A \times \epsilon)$ for signal events (as a function of the distance of approach):

- -29% for 20σ
- -41% for 15σ

Can be carried out with PPS tracking-only information (unlike $\gamma\gamma \to W^+W^-$ and dijet channels)

Old optics parameters! (more information here)

- Rich physics programme to be expected with the CT-PPS
 - Sensitivity to AQGCs increased by 2 orders of magnitude
 - Direct probe to the diphoton excess at \sim 750 GeV
- Many experimental challenges
 - Low-β*, high-pileup collection mode
 - High granularity tracking in a radiation-hard environment
 - Picosecond-scale timing resolution to be achieved
- Some subsystems already integrated into the CMS DAQ
 - Data collection started in 2016 for tracking component,
 - Diamonds timing detectors being integrated during this TS, data collection within the next week(s)...