Particle production from e⁻e⁺ through pp to AA collisions arXiv:1601.06001

R. A. Lacey¹, P. Liu¹, N. Magdy¹, M. Csanád^{1,2}, B. Schweid¹, N. N. Ajitanand¹, J. Alexander¹, R. Pak³
¹Stony Brook University, ²Eötvös University, ³Brookhaven National Laboratory

Low-x 2016, Gyöngyös, Hungary, 7 June 2016

Particle production mechanisms

- A+A(B) collisions: frequently described with thermo/hydrodynamics
- Model ingredients: macroscopic variables (temperature, entropy)
 see e.g. W. Kittel and E. A. DeWolf, Soft Multihadron Dynamics, (World Scientic, 2005)
 or recent PHENIX, PHOBOS, STAR, ALICE, CMS and ATLAS papers
- Microscopic phenomenology used in $e^- + e^+$, $e^{\pm} + p$, $p(\bar{p})+p$ or p+A
- Perturbative gluon exchange, gauge fields, strings, parton hadronization

```
see e.g. Kharzeev et al., NPA747; Armesto et al., PRL94, Dusling et al., PRD87 and other references in arXiv:1601.06001
```

- Even for soft collisions and soft particle production
- Associated mechanisms: single-diffractive, double-diffractive, inelastic non-diffractive collisions
- These models don't use macroscopic variables
- What do the measurements tell us?

Similarities from p+p through p+A to A+A(B)

- ullet Similar charged particle multiplicities ($N_{
 m ch}$)
- ullet Similar pseudorapidity densities $\left(\mathrm{d}\emph{N}_{\mathrm{ch}}/\mathrm{d}\eta\right)$
- ullet Azimuthal long range $(|\Delta\eta| \geq 4)$ angular correlations, "ridge"
- Collective anisotropic flow in A+A collisions
- Also in p+p, p+Pb, d+Au and He+Au
 ALICE PLB719, ATLAS PRL110, CMS PLB718, PHENIX PRL114, PHENIX PRL115

- Qualitative consistency achieved with hydro
 See e.g. Bozek, PRC85, the Buda-Lund model from Csörgő et al., NPA661, JPhysG30, EPJA38, ...
- Common underlying particle production mechanism dominating?

Our framework to capture underlying physics

Macroscopic entropy (S) ansatz

$$S \sim (TR)^3 \sim \text{const.}$$
 (1)

$$\mathrm{d}\textit{N}_{\mathrm{ch}}/\mathrm{d}\eta$$
 and $\langle\textit{N}_{\mathrm{ch}}\rangle\sim\textit{S}$ (2)

- ullet Initial stage variable $N_{
 m pp}$ number of participant pairs
 - $N_{\mathrm{pp}} = 1$ for $\mathrm{e^-} + \mathrm{e^+}$, $\mathrm{e^\pm} + \mathrm{p}$ and $\mathrm{p}(\bar{\mathrm{p}}) + \mathrm{p}$
 - Nucleon or quark participant pairs (N_{npp}, N_{qpp}) in p+A, A+A(B)
- Further assumption: $N_{
 m pp}^{1/3} \propto R \Rightarrow [({
 m d}N_{
 m ch}/{
 m d}\eta)/N_{
 m pp}]^{1/3} \sim T \sim \langle p_T
 angle$
- ullet Monte Carlo Glauber calculations performed to obtain ${\it N}_{
 m npp}$ and ${\it N}_{
 m qpp}$. Lacey et al. PRC83, Eremin et al. PRC67, Bialas et al. PLB649, Nouicer EPJC49, PHENIX PRC89
- Subset of initial particles become participants by an initial inelastic N+N or q+q interaction.
- ullet $N_{
 m np}=2N_{
 m npp}$ or $N_{
 m qp}=2N_{
 m qpp}$
- ullet N+N (q+q) cross sections taken from literature Fagunders et al, J. Phys. G40

Effective energy notation in $e^- + e^+$, $p(\bar{p})+p$ and $e^{\pm} + p$

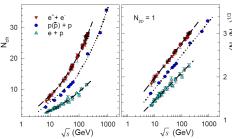
• Similarity in particle production \Leftrightarrow $E_{\rm eff}$ available for particle production?

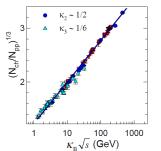
Feinberg Phys Rept. 5, Albini et al. Nuovo Cim A32, Basile et al. PLB92&Nuovo Cim A67

- Remaining energy associated with leading particles
 PHOBOS nucl-ex/0301017
- ullet Constituent quark picture: fraction of quarks contribute to $E_{
 m eff}$ Nyiri, IJMP A18
- ullet Thus a reduced \sqrt{s} is expected to give similar values for $E_{
 m eff}$

$$\kappa_1 \sqrt{s}_{\rm ee} \approx \kappa_2 \sqrt{s}_{\rm pp} \approx \kappa_3 \sqrt{s}_{\rm ep} \text{ with } \kappa_1 \equiv 1$$
(3)

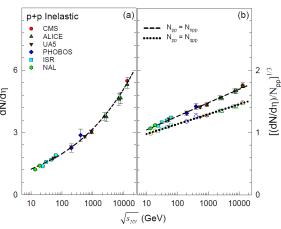
Sarkisyan and Sakharov, hep-ph/0410324


- \bullet $\kappa_{2,3}$: scale factors related to the number of quark participants
- Fraction of the available energy for particle production
- ullet Comparable $\langle {\it N}_{
 m ch}
 angle$ in ${
 m e}^- + {
 m e}^+$, p($ar{
 m p}$)+p and ${
 m e}^\pm + {
 m p}$ for reduced $\sqrt{\it s}$

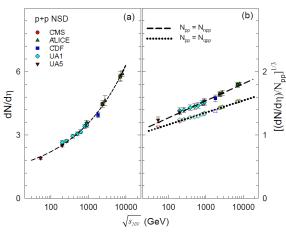

$\langle N_{\rm ch} \rangle$ vs. \sqrt{s} scaling

- $[N_{
 m ch}/N_{
 m pp}]^{1/3} \sim T \propto \log \sqrt{s}$
- Scaling versus $\kappa_n \sqrt{s}$
- $\kappa_1 = 1$ by definition
- $\kappa_2 \sim 1/2$: Half the pairs deposit their full energy
- $\kappa_3 \sim 1/6$: Half the pairs, 1/3 of the proton
- Fit result:

$$\langle N_{
m ch}
angle = \left[b_{\langle {
m N}_{
m ch}
angle} + m_{\langle {
m N}_{
m ch}
angle} \log(\kappa_n \sqrt{s}) \right]^3 \ b_{\langle {
m N}_{
m ch}
angle} = 1.22 \pm 0.01 \ m_{\langle {
m N}_{
m ch}
angle} = 0.775 \pm 0.006$$


• Can be used to predict $\langle N_{\rm ch} \rangle$ as a function of \sqrt{s} for ee, ep and pp

$\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta|_{\eta\approx0}$ in inelastic p+p collisions

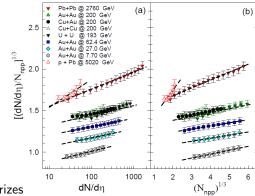

- Similar to $\langle N_{\rm ch} \rangle$
- $T \sim \langle p_T \rangle \propto \log \sqrt{s}$
- ullet $N_{
 m qpp}$ scaling: similar trend
- Slow change of $N_{\rm qpp}$ vs \sqrt{s}
- Fit: dashed curve
- Recent 13 TeV inel. results by CMS, ALICE: good agreement with this scaling prediction

$${
m d}N_{
m ch}/{
m d}\eta|_{
m INE} = \left[b_{
m INE} + m_{
m INE}\log(\sqrt{s})
ight]^3, \ b_{
m INE} = 0.826 \pm 0.008, \ m_{
m INE} = 0.220 \pm 0.004$$

$\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta|_{\eta\approx0}$ in NSD p+p collisions

- Similar trends as for inelastic collisions
- Larger intercept
- Smaller slope
- Recall $\left[rac{\mathrm{d} N_{\mathrm{ch}}/\mathrm{d} \eta}{N_{\mathrm{pp}}}
 ight]^{1/3} \sim \, T \sim \langle p_T
 angle$
- $\langle p_T \rangle \propto T$ increases as $\log(\sqrt{s})$
- Can be used to predict $\mathrm{d}\textit{N}_{\mathrm{ch}}/\mathrm{d}\eta$

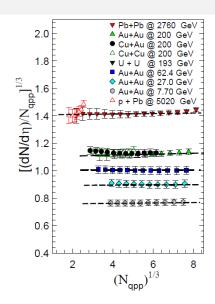
$$\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta|_{\mathrm{NSD}} = \left[b_{\mathrm{NSD}} + m_{\mathrm{NSD}}\log(\sqrt{s})\right]^3, \\ b_{\mathrm{NSD}} = 0.747 \pm 0.022, \ m_{\mathrm{NSD}} = 0.267 \pm 0.007$$


Nucleon participant scaling in A+A(B) collisions

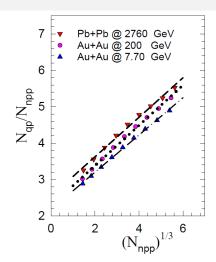
• All systems:

$$\left[rac{\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta|_{|\eta|=0.5}}{N_{\mathrm{npp}}}
ight]^{1/3}\sim T$$
(a): $\propto \log(\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta)\sim \log S$,
(b): $\propto N_{\mathrm{npp}}^{1/3}\sim R$

- Logarithmic *S*-dependence
- Linear size dependence (at a given $\sqrt{s_{
 m NN}}$)
- $\langle p_T
 angle$ increases with $\sqrt{s_{
 m NN}}$ and $\log({
 m d}N_{
 m ch}/{
 m d}\eta)$
- Pseudorapidity density factorizes dN/d η into contributions depending on $\sqrt{s_{\mathrm{NN}}}$ and $N_{\mathrm{npp}}^{1/3}$


• Slope increaseses with beam energy

• Lack of sensitivity to system type (Cu+Cu, Cu+Au, Au+Au, U+U), for fixed $\sqrt{s_{\rm NN}}$.


Quark participant scaling

- If N_{qpp} instead of N_{npp}: size dependence suppressed
- Clear $\sqrt{s_{\rm NN}}$ dependence
- Can be attributed to the linear dependence of $N_{\rm qp}/N_{\rm npp}$ on initial size (see next slide)
- Central to mid-central p+Pb: $N_{\rm qp}/N_{\rm npp}$ decreases with $N_{\rm npp}^{1/3}$
- Reduction of the energy deposited in these collisions, large multiplicity fluctuations.

$N_{\rm qp}/N_{\rm npp}$ scaling

- $N_{\rm qp}/N_{\rm npp}$ scales with $N_{\rm npp}^{1/3}\sim R$
- N_{app} scales roughly with volume
- Slight increase over broad \sqrt{s} range.

Similarity between p+p and A+A(B)

- Strikingly similar trends for NSD p+p and A+A(B) collisions
- Common particle production mechanism?
- Deviation for $\sqrt{s_{\rm NN}} \lesssim 2 \text{ TeV}$
 - Larger T or $\langle p_T \rangle$ for same \sqrt{s} p+p
- Centrality and \sqrt{s} dependent values of $dN_{\rm ch}/d\eta|_{|\eta|=0.5}$ scale with $N_{\rm opp}$ and $\log(\sqrt{s_{\rm NN}})$.
- $\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta|_{|\eta|=0.5} = N_{\mathrm{qpp}} \left[b_{\mathrm{AA}} + m_{\mathrm{AA}} \log(\sqrt{s}) \right]^3$ $b_{\rm AA} = 0.530 \pm 0.008, \ m_{\rm AA} = 0.258 \pm 0.004$

• Basis for robust predictions.

AA fit:

 \bullet E.g. $\sim 20\%$ increase of $\mathrm{d}\textit{N}_{\mathrm{ch}}/\mathrm{d}\eta|_{|\eta|=0.5}$ for Pb+Pb at 5.02 TeV compared to 2.76 TeV.

Low-x 2016

Summary

- ullet Performed a systematic study of $\mathrm{d}\emph{N}_{\mathrm{ch}}/\mathrm{d}\eta$ and $\langle\emph{N}_{\mathrm{ch}}
 angle$
- \bullet e⁻ + e⁺, e[±] + p, and p(\bar{p})+p, p+A and A+A(B)
- Several orders of magnitude in \sqrt{s}
- ullet Scaling patterns for both $\mathrm{d}\textit{N}_{\mathrm{ch}}/\mathrm{d}\eta$ and $\langle\textit{N}_{\mathrm{ch}}
 angle$
- Validation of leading particle effect
- Importance of quark participants in A+A(B)
- Strikingly similar terms for NSD p+p and A+A(B)
- ullet Pseudorapidity factorizes with $\log(\sqrt{s})$ and $N_{
 m pp}$
- Quantification: systematization and prediction of $dN_{ch}/d\eta$ and $\langle N_{ch} \rangle$ measurements

Thank you for your attention!

And let me invite you to the 16th Zimanyi School in Budapest

ZIMÁNYI SCHOOL'16

Magdolna Zimányi (1934 - 2016)

16. Zimányi

WINTER SCHOOL ON HEAVY ION PHYSICS

Dec. 5. - Dec. 9., Budapest, Hungary

József Zimányi (1931 - 2006)

http://zimanyischool.kfki.hu/16/