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I. Introduction

Motivation
I Deeper understanding of rehadronization
I More accurate description of the fireball evolution
I Previous analytic solutions are single-component
I A multi-component scenario is realistic
I First create a simplified, non-relativistic model
I Relativistic generalizations on progress
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I. Introduction

T = Tf + m〈ut〉2 =⇒ Ti = Tf + mi 〈ut〉2 (1)
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II. Basic equations

Basic equations of non-relativistic hydrodynamics

∂n
∂t

+∇ (nv) = 0, (2)

∂ε

∂t
+∇ (εv) = −p∇v, (3)

mn
(
∂

∂t
+ v∇

)
v = −∇p. (4)

Basic equations of relativistic hydrodynamics

∂µ (nuµ) = 0, (5)

∂νTµν = 0. (6)
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II. Basic equations

Before the rehadronization
There’s no particle conservation!

ε = Tσ − p + µn =⇒ ε = Tσ − p +
∑

i

µini , (7)

Since
µi = 0, (8)

ε+ p = Tσ, (9)

dε = Tdσ, (10)

from the energy conservation:

∂σ

∂t
+∇ (vσ) = 0. (11)
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II. Basic equations

Euler equation (µ = 0, n→ 0, v � c = 1) [3]:

(ε+ p) (∂t + v∇) v = Tσ (∂t + v∇) v = −∇p. (12)

Equation of state (from lattice QCD [2]):

ε = κQCD(T )p. (13)

Energy conservation =⇒ diff. eq. of temperature [3]:

1+ κ

T

[
d

dT
κT
1+ κ

]
(∂t + v∇)T +∇v = 0. (14)
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II. Basic equations

After the rehadronization
It was known for one component (T � m =⇒ µ ≈ m):

ε+ p = µn + Tσ ≈ mn. (15)

For the multi-component scenario:

mn =
∑

i

mini , (16)

p =
∑

i

pi . (17)

But p � mn thus:
ε ≈

∑
i

mini (18)
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II. Basic equations

Euler equation: ∑
i

mini (∂t + v∇) v = −
∑

i

∇pi . (19)

Equation of state:
ε = κHRG (T )p, (20)

lim
T→Tf

κHRG (T ) = 3/2 (21)

Diff. equation of temperature [3]:[
d

dT
κT
]
(∂t + v∇)T + T∇v = 0. (22)



Exact Hydro
Solutions

Kasza, Csörgő

I. Introduction
Motivation
Inverse slope

II. Basic
equations
Hydro equations
Before the
rehadronization
After the
rehadronization

III. Equation of
state
Differential
equations
Solutions for κ
Hydro fit

IV. Crossover
Boundary
conditions
Multi-component
solution
Time dependence

V. Observables
Inverse slope
HBT-radii

VI. Summary

VII.
Bibliography

III. Equation of state

3 classes of solutions:
I T (t, �r) = T (t)
I κ = const.
I d

dT (κT ) = const. (new!)

Differential equations for κ:
For sQGP phase:

d
dT

[
Tκ(T )

1+ κ(T )

]
=

κQ

1+ κ(T )
(23)

For hadron gas phase:

d
dT

[Tκ(T )] =
κcTc − κf Tf

Tc − Tf
(24)
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III. Equation of state

Solutions:
For sQGP phase:

κQM(T ) =
κQ

(
T
Tc

)1+κQ
+ κc−κQ

κc+1(
T
Tc

)1+κQ
− κc−κQ

κc+1

, (25)

For hadron gas phase:

κHM(T ) =
κcTc − κf Tf

Tc − Tf
− κc − κf

Tc − Tf

TcTf

T
, (26)

where
κf = 3/2. (27)
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III. Equation of state
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III. Equation of state

Curves χ2/NDF CL [%]

κQ = 3.833 6.48/4 16.6

Tf = 140 MeV 86.56/6 1.6·10−14

Tf = 100 MeV 7.71/6 26.0

Tf = 60 MeV 1.35/6 96.9

Tf = 20 MeV 1.22/6 97.6
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IV. Crossover

sQGP Multi-component hadron gas

∂σ
∂t +∇ (vσ) = 0 ∂ni

∂t +∇ (vni ) = 0, ∀i

Tσ (∂t + v∇) v = −∇p
∑
i

mini (∂t + v∇) v = −
∑
i
∇pi

1+κ
T

[ d
dT

κT
1+κ

]
(∂t + v∇)T = −∇v 1

T

[ d
dT κT

]
(∂t + v∇)T = −∇v

κ = κQM(T ) κ = κHM(T )

Boundary conditions (B=before, A=after)
tr : the estimated "moment" of the rehadronization

TB(tr , �r) = TA(tr , �r) (28)
vB(tr ) = vA(tr ) (29)

κQGP(TB(tr )) = κHG (TA(tr )) (30)
{XB(tr ),YB(tr ),ZB(tr )} = {XA(tr ),YA(tr ),ZA(tr )} (31)
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IV. Crossover

Ansatz
We are looking for a solution, which allows us to use the same
scaling for each component of the hadron gas, therefore the gas
expands collectively.

{Xi ,Yi ,Zi} = {X ,Y ,Z}, ∀i . (32)

Ideal gas approximation:

p =
∑

i

pi = T
∑

i

ni , (33)

replace it to the Euler-equation:∑
i

mini (∂t + v∇) v = −T
∑

i

∇ni . (34)
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IV. Crossover

Multi-component solution
The expression of entropy density [3]:

σ(r, t) = σr
Vr

V
e−s/2 =

σr

ni,r
ni (r, t) (35)

Let’s follow Landau’s argument:

σ(r, t)
σr

=
ni (r, t)

ni,r
=⇒ σ ∼ σr (36)

ni (r, t) = ni,r
Vr

V
e−s/2 = ni,r

(
XrYrZr

XYZ

)
e−s/2 (37)

where

s =
r2
x

X 2 +
r2
y

Y 2 +
r2
z

Z 2 . (38)
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IV. Crossover

The velocity field without and with rotation:

vx =
Ẋ (t)
X (t)

rx , vy =
Ẏ (t)
Y (t)

ry , vz =
Ż (t)
Z (t)

rz , (39)

vx =
Ṙ(t)
R(t)

rx − ωry , vy =
Ṙ(t)
R(t)

ry + ωrx , vz =
Ż (t)
Z (t)

rz . (40)

In the rotational case we use X (t) = Y (t) = R(t) symmetry, and

ω = ω0 (R0/R)2 . (41)

The temperature profile has spatial homogenity:

TA = T (t),

Tr = TA(tr ) = TB(tr ) ≈ Tc ≈ 175 MeV .
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IV. Crossover

From the Euler equation we gain the differential equations of the
expanding fireball:

HG solutions Single-component Multi-component

Without rot. XẌ = Y Ÿ = ZZ̈ = T
m XẌ = Y Ÿ = ZZ̈ = T

〈m〉

With rot. RR̈ − R2ω2 = ZZ̈ = T
m RR̈ − R2ω2 = ZZ̈ = T

〈m〉

In one component case there’s one difference: m⇐⇒ 〈m〉:

〈m〉 =

∑
i

mini,r∑
i

ni,r
≈ 280 MeV . (42)

Conclusion
The X , Y and Z scales are independent of the type of particles!
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IV. Crossover

Time dependence

R0 = Z0 = 5 fm
Ṙ0 = Ż0 = 0
θ0 = 0, ω0 = 0.05 c/fm
Tf = 100 MeV , 〈m〉 = 280 MeV
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IV. Crossover

At the chemical freezeout temperature:
1

1+ κc
<

Tc

〈m〉
(43)

The medium has a second "explosion", that starts just after the
conversion to the hadron gas!

Conclusion
Non-relativistic approximation breaks down when Ṙ and Ż
becomes too large, search for relativistic generalization started!
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V. Observables

Inverse slope Single-component Multi-component

Tx = Tf + mẊf
2 Tx,i = Tf + mi Ẋf

2

Without rot.[4] Ty = Tf + mẎf
2 Ty,i = Tf + mi Ẏf

2

Tz = Tf + mŻf
2 Tz,i = Tf + mi Żf

2

Tx = Tf + m
(
Ṙf

2
+ ω2

f R2
f

)
Tx,i = Tf + mi

(
Ṙf

2
+ ω2

f R2
f

)
With rot. [5] Ty = Tf + m

(
Ṙf

2
+ ω2

f R2
f

)
Ty,i = Tf + mi

(
Ṙf

2
+ ω2

f R2
f

)
Tz = Tf + mŻf

2 Tz,i = Tf + mi Żf
2

Simple method:
m→ mi

Tj → Tj,i

Linear mi dependence:

Tj,i = k1 ·mi + k2 (44)
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V. Observables

Tj,i = k1 ·mi + k2 (45)
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V. Observables
HBT-radii Single-component Multi-component

R2
x =

X2
f

1+ m
Tf

Ẋ2
f

R2
x,i =

X2
f

1+
mi
Tf

Ẋ2
f

Without rot. [4] R2
y =

Y2
f

1+ m
Tf

Ẏ2
f

R2
y,i =

Y2
f

1+
mi
Tf

Ẏ2
f

R2
z =

Z2
f

1+ m
Tf

Ż2
f

R2
z,i =

Z2
f

1+
mi
Tf

Ż2
f

R2
x =

R2
f

1+ m
Tf

(
Ṙ2

f
+R2ω2

) R2
x,i =

R2
f

1+
mi
Tf

(
Ṙ2

f
+R2ω2

)

With rot. [5] R2
y =

R2
f

1+ m
Tf

(
Ṙ2

f
+R2ω2

) R2
y,i =

R2
f

1+
mi
Tf

(
Ṙ2

f
+R2ω2

)

R2
z =

Z2
f

1+ m
Tf

Ż2
f

R2
z,i =

Z2
f

1+
mi
Tf

Ż2
f

Simple method:
m→ mi

Rj → Rj,i

Linear mi dependence:

R−2
j,i = c1 ·mi + c2 (46)
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V. Observables

R−2
j,i = c1 ·mi + c2 (47)
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VI. Summary

I Rehadronization: crossover =⇒ simple boundary conditions
I Take into consideration the multi-component scenario
I Introduce scales independently from the type of particles
I Gain a similar dynamical equation to the one-component case
I The multi-component scenario does not complicate the

description
I Difference: mean mass weighted by the number of particles
I The hadron gas has an exploding dynamics
I We need the relativistic formalism
I θf (T0) is on progress
I Inverse slope parameters: T −→ Ti

I HBT-radii: R −→ Ri
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