EXACT SOLUTIONS FOR AN EXPANDING AND ROTATING, REHADRONIZING FIREBALL

- WITH LATTICE QCD EQUATION OF STATE -

Gábor Kasza¹ & Tamás Csörgő^{2,3}

¹Eötvös Loránd Univerity

²Institute for Particle and Nuclear Physics Wigner RCP, HAS

³Károly Róbert University College

Low-X Meeting Gyöngyös, 2016. VI. 8. Exact Hydro SOLUTIONS

MOTIVATION

Motivation

- ► Deeper understanding of rehadronization
- ▶ More accurate description of the fireball evolution
- Previous analytic solutions are single-component
- ► A multi-component scenario is realistic
- ► First create a simplified, non-relativistic model
- ► Relativistic generalizations on progress

EQUATIONS HYDRO EQU

HYDRO EQUATIONS
BEFORE THE
REHADRONIZATION
AFTER THE
REHADRONIZATION

II. Equation of Tate

DIFFERENTIAL EQUATIONS
SOLUTIONS FOR κ

IV. CROSSOVER BOUNDARY CONDITIONS

MULTI-COMPONE SOLUTION TIME DEPENDENCE

Time depend

V. Observabl Inverse slop HBT-radii

VI. SUMMAF

$$T = T_f + m\langle u_t \rangle^2 \Longrightarrow T_i = T_f + m_i \langle u_t \rangle^2$$
 (1)

Basic equations of non-relativistic hydrodynamics

$$\frac{\partial n}{\partial t} + \nabla (n\mathbf{v}) = 0, \tag{2}$$

$$\frac{\partial \varepsilon}{\partial t} + \nabla \left(\varepsilon \mathbf{v} \right) = -p \nabla \mathbf{v}, \tag{3}$$

$$mn\left(\frac{\partial}{\partial t} + \mathbf{v}\nabla\right)\mathbf{v} = -\nabla\rho. \tag{4}$$

Basic equations of relativistic hydrodynamics

$$\partial_{\mu}\left(nu^{\mu}\right)=0,\tag{5}$$

$$\partial_{\nu} T^{\mu\nu} = 0. \tag{6}$$

I. Introduction Motivation Inverse slope

EQUATIONS
HYDRO EQUATIONS
BEFORE THE
REHADRONIZATION
AFTER THE
REHADRONIZATION

II. Equation of

DIFFERENTIAL EQUATIONS
SOLUTIONS FOR κ HYDRO FIT

IV. CROSSOVER
BOUNDARY
CONDITIONS
MULTI-COMPONENT
SOLUTION

Observables

I. SUMMARY

Before the rehadronization

There's no particle conservation!

$$\varepsilon = T\sigma - p + \mu n \Longrightarrow \varepsilon = T\sigma - p + \sum_{i} \mu_{i} n_{i},$$
 (7)

Since

$$\mu_i = 0, \tag{8}$$

$$\varepsilon + p = T\sigma, \tag{9}$$

$$d\varepsilon = Td\sigma, \tag{10}$$

from the energy conservation:

$$\frac{\partial \sigma}{\partial t} + \nabla \left(\mathbf{v} \sigma \right) = 0. \tag{11}$$

I. Introduction

Motivation

Inverse slope

EQUATIONS
HYDRO EQUATIONS
BEFORE THE
REHADRONIZATION
AFTER THE
REHADRONIZATION

III. EQUATION OF

EQUATIONS
SOLUTIONS FOR κ HYDRO FIT

IV. CROSSOVER
BOUNDARY
CONDITIONS
MULTI-COMPONENT
SOLUTION

V. Observables Inverse slope HBT-radii

VI. SUMMAR

I. Introduction Motivation

II. Basic
EQUATIONS
HYDRO EQUATIONS
BEFORE THE
REHADRONIZATION
AFTER THE
REHADRONIZATION

III. EQUATION OF STATE

DIFFERENTIAL EQUATIONS
SOLUTIONS FOR κ

IV. CROSSOVER
BOUNDARY
CONDITIONS
MULTI-COMPONENT

MULTI-COMPONED SOLUTION
TIME DEPENDENCE

Inverse slope HBT-radii

VI. SUMMAR

VII. Bibliograph

Euler equation ($\mu = 0$, $n \rightarrow 0$, $v \ll c = 1$) [3]:

$$(\varepsilon + p)(\partial_t + \mathbf{v}\nabla)\mathbf{v} = T\sigma(\partial_t + \mathbf{v}\nabla)\mathbf{v} = -\nabla p.$$
 (12)

Equation of state (from lattice QCD [2]):

$$\varepsilon = \kappa_{QCD}(T)p. \tag{13}$$

Energy conservation \Longrightarrow diff. eq. of temperature [3]:

$$\frac{1+\kappa}{T} \left[\frac{d}{dT} \frac{\kappa T}{1+\kappa} \right] (\partial_t + \mathbf{v} \nabla) T + \nabla \mathbf{v} = 0.$$
 (14)

After the rehadronization

It was known for one component ($T \ll m \Longrightarrow \mu \approx m$):

$$\varepsilon + p = \mu n + T\sigma \approx mn. \tag{15}$$

For the multi-component scenario:

$$mn = \sum_{i} m_{i} n_{i}, \tag{16}$$

$$p = \sum_{i} p_{i}. \tag{17}$$

But $p \ll mn$ thus:

$$\varepsilon \approx \sum_{i} m_{i} n_{i} \tag{18}$$

I. Introduction
Motivation
Inverse slope

EQUATIONS
HYDRO EQUATIONS
BEFORE THE
REHADRONIZATION
AFTER THE
REHADRONIZATION

OFFERENTIAL QUATIONS FOR κ

IV. CROSSOVER
BOUNDARY
CONDITIONS
MULTI-COMPONENT
SOLUTION

V. Observables Inverse slope HBT-radii

VI. SUMMAR

Euler equation:

$$\sum_{i} m_{i} n_{i} \left(\partial_{t} + \mathbf{v} \nabla \right) \mathbf{v} = -\sum_{i} \nabla p_{i}. \tag{19}$$

Equation of state:

$$\varepsilon = \kappa_{HRG}(T)p, \tag{20}$$

$$\lim_{T \to T_f} \kappa_{HRG}(T) = 3/2 \tag{21}$$

Diff. equation of temperature [3]:

$$\left[\frac{d}{dT}\kappa T\right]\left(\partial_t + \mathbf{v}\nabla\right)T + T\nabla\mathbf{v} = 0.$$
 (22)

I. Introduction

Motivation

Inverse slope

EQUATIONS
HYDRO EQUATIONS
BEFORE THE
REHADRONIZATION
AFTER THE
REHADRONIZATION

TATE DIFFERENTIAL FOLIATIONS

EQUATIONS
SOLUTIONS FOR K
HYDRO FIT

IV. CROSSOVER
BOUNDARY
CONDITIONS
MULTI-COMPONENT
SOLUTION
TIME DEPENDENCE

/. Observables Inverse slope HBT-radii

VI. SUMMAR

3 classes of solutions:

- ightharpoonup T(t, t) = T(t)
- $\triangleright \kappa = const.$
- $ightharpoonup \frac{d}{dT}(\kappa T) = const. \text{ (new!)}$

Differential equations for κ :

For sQGP phase:

$$\frac{d}{dT} \left[\frac{T\kappa(T)}{1 + \kappa(T)} \right] = \frac{\kappa_Q}{1 + \kappa(T)} \tag{23}$$

For hadron gas phase:

$$\frac{d}{dT}\left[T\kappa(T)\right] = \frac{\kappa_c T_c - \kappa_f T_f}{T_c - T_f} \tag{24}$$

I. Introduction
Motivation
Inverse slope

EQUATIONS
HYDRO EQUATIONS
BEFORE THE
REHADRONIZATION
AFTER THE
REHADRONIZATION

DIFFERENTIAL

EQUATIONS
SOLUTIONS FOR K
HYDRO FIT

V. Crossover
Boundary
conditions
Multi-component
solution

V. Observable Inverse slope HBT-radii

VI. SUMMAI

Solutions:

For sQGP phase:

$$\kappa_{QM}(T) = \frac{\kappa_{Q} \left(\frac{T}{T_{c}}\right)^{1+\kappa_{Q}} + \frac{\kappa_{c} - \kappa_{Q}}{\kappa_{c} + 1}}{\left(\frac{T}{T_{c}}\right)^{1+\kappa_{Q}} - \frac{\kappa_{c} - \kappa_{Q}}{\kappa_{c} + 1}},$$
(25)

For hadron gas phase:

$$\kappa_{HM}(T) = \frac{\kappa_c T_c - \kappa_f T_f}{T_c - T_f} - \frac{\kappa_c - \kappa_f}{T_c - T_f} \frac{T_c T_f}{T}, \tag{26}$$

where

$$\kappa_f = 3/2. \tag{27}$$

I. Introduction
Motivation
Inverse slope

EQUATIONS
HYDRO EQUATIONS
BEFORE THE
REHADRONIZATION
AFTER THE
REHADRONIZATION

II. Equation of tate Differential

DIFFERENTIAL EQUATIONS

SOLUTIONS FOR κ

HYDRO FIT

IV. CROSSOVER
BOUNDARY
CONDITIONS
MULTI-COMPONENT
SOLUTION

V. Observables Inverse slope HBT-radii

VI. Summarı

III. EQUATION OF STATE

EXACT HYDRO SOLUTIONS

Kasza, Csörgő

I. Introduction

Motivation

II. BASIC
EQUATIONS
HYDRO EQUATIONS
BEFORE THE
REHADRONIZATION
AFTER THE

III. EQUATION OF

DIFFERENTIAL EQUATIONS SOLUTIONS FOR A

SOLUTIONS FOR .
HYDRO FIT

HYDRO FIT IV. Crossover

BOUNDARY
CONDITIONS
MULTI-COMPONENT
SOLUTION

V. Observable Inverse slope HBT-radii

VI. SUMM

III. EQUATION OF STATE

Curves	χ^2/NDF	CL [%]
$\kappa_Q = 3.833$	6.48/4	16.6
$T_f = 140 \; MeV$	86.56/6	$1.6 \cdot 10^{-14}$
$T_f = 100 \; MeV$	7.71/6	26.0
$T_f = 60 \; MeV$	1.35/6	96.9
$T_f = 20 \; MeV$	1.22/6	97.6

EXACT HYDRO SOLUTIONS

Kasza, Csörcő

I. Introduction
Motivation
Inverse slope

EQUATIONS
HYDRO EQUATIONS
BEFORE THE
REHADRONIZATION
AFTER THE
REHADRONIZATION

I. Equation of

DIFFERENTIAL EQUATIONS
SOLUTIONS FOR F

HYDRO FIT

IV. CROSSOVER
BOUNDARY
CONDITIONS
MULTI-COMPONENT

SOLUTION
TIME DEPENDENCE

7. Observables Inverse slope HBT-radii

VI. SUMMAR

 $\frac{1+\kappa}{T}$

BOUNDARY

Multi-component hadron gas SOGP

540.	Water component nauron gas
$rac{\partial \sigma}{\partial t} + abla \left(\mathbf{v} \sigma ight) = 0$	$\frac{\partial n_i}{\partial t} + \nabla (\mathbf{v} n_i) = 0, \forall i$
	$\sum_{i} m_{i} n_{i} \left(\partial_{t} + \mathbf{v} \nabla \right) \mathbf{v} = -\sum_{i} \nabla p_{i}$
$\left[rac{d}{dT} rac{\kappa T}{1+\kappa} ight] \left(\partial_{\mathbf{t}} + \mathbf{v} abla ight) T = - abla \mathbf{v}$	$\frac{1}{T} \left[\frac{d}{dT} \kappa T \right] \left(\partial_t + \mathbf{v} \nabla \right) T = -\nabla \mathbf{v}$
$\kappa = \kappa_{OM}(T)$	$\kappa = \kappa_{HM}(T)$

Boundary conditions (B=before, A=after)

t_r: the estimated "moment" of the rehadronization

$$T_B(t_r, \rlap/r) = T_A(t_r, \rlap/r) \tag{28}$$

$$\mathbf{v}_B(t_r) = \mathbf{v}_A(t_r) \tag{29}$$

$$\kappa_{QGP}(T_B(t_r)) = \kappa_{HG}(T_A(t_r)) \tag{30}$$

$$\{X_B(t_r), Y_B(t_r), Z_B(t_r)\} = \{X_A(t_r), Y_A(t_r), Z_A(t_r)\}$$
(31)

Ansatz

We are looking for a solution, which allows us to use the same scaling for each component of the hadron gas, therefore the gas expands collectively.

$${X_i, Y_i, Z_i} = {X, Y, Z}, \forall i.$$
 (32)

Ideal gas approximation:

$$p = \sum_{i} p_i = T \sum_{i} n_i, \tag{33}$$

replace it to the Euler-equation:

$$\sum_{i} m_{i} n_{i} \left(\partial_{t} + \mathbf{v} \nabla \right) \mathbf{v} = -T \sum_{i} \nabla n_{i}. \tag{34}$$

I. Introduction

Motivation

Inverse slope

AFTER THE

rate Differential equations

EQUATIONS SOLUTIONS FOR κ HYDRO FIT

IV. CROSSOVER

BOUNDARY
CONDITIONS

MULTI-COMPONENT
SOLUTION

V. Observables
Inverse slope
HBT-radii

VI. SUMMAR

Multi-component solution

The expression of entropy density [3]:

$$\sigma(\mathbf{r},t) = \sigma_r \frac{V_r}{V} e^{-s/2} = \frac{\sigma_r}{n_{i,r}} n_i(\mathbf{r},t)$$
 (35)

Let's follow Landau's argument:

$$\frac{\sigma(\mathbf{r},t)}{\sigma_r} = \frac{n_i(\mathbf{r},t)}{n_{i,r}} \Longrightarrow \sigma \sim \sigma_r \tag{36}$$

$$n_i(\mathbf{r},t) = n_{i,r} \frac{V_r}{V} e^{-s/2} = n_{i,r} \left(\frac{X_r Y_r Z_r}{XYZ} \right) e^{-s/2}$$
 (37)

where

$$s = \frac{r_x^2}{X^2} + \frac{r_y^2}{Y^2} + \frac{r_z^2}{Z^2}.$$
 (38)

I. Introduction

Motivation

Inverse slope

HYDRO EQUATIONS
BEFORE THE
REHADRONIZATION
AFTER THE
REHADRONIZATION

DIFFERENTIAL EQUATIONS
SOLUTIONS FOR κ HYDRO FIT

BOUNDARY
CONDITIONS
MULTI-COMPONENT
SOLUTION

Time dependen V. Observables Inverse slope

VI. SUMMARY

The velocity field without and with rotation:

$$v_{x} = \frac{\dot{X}(t)}{X(t)}r_{x}, \quad v_{y} = \frac{\dot{Y}(t)}{Y(t)}r_{y}, \quad v_{z} = \frac{\dot{Z}(t)}{Z(t)}r_{z}, \quad (39)$$

$$v_{x} = \frac{\dot{R}(t)}{R(t)} r_{x} - \omega r_{y}, \quad v_{y} = \frac{\dot{R}(t)}{R(t)} r_{y} + \omega r_{x}, \quad v_{z} = \frac{\dot{Z}(t)}{Z(t)} r_{z}. \quad (40)$$

In the rotational case we use X(t) = Y(t) = R(t) symmetry, and

$$\omega = \omega_0 \left(R_0 / R \right)^2. \tag{41}$$

The temperature profile has spatial homogenity:

$$T_A = T(t),$$
 $T_r = T_A(t_r) = T_B(t_r) pprox T_C pprox 175 \ MeV.$

I. Introduction

Motivation

QUATIONS

Before the rehadronization After the rehadronization

II. Equation of tate

EQUATIONS
SOLUTIONS FOR κ HYDRO FIT

Boundary conditions Multi-component

SOLUTION
TIME DEPENDENCE

V. Observable Inverse slope HBT-radii

VI. SUMMAI

HG solutions	Single-component	Multi-component
Without rot.	$X\ddot{X} = Y\ddot{Y} = Z\ddot{Z} = \frac{T}{m}$	$X\ddot{X} = Y\ddot{Y} = Z\ddot{Z} = \frac{T}{\langle m \rangle}$
With rot.	$R\ddot{R} - R^2\omega^2 = Z\ddot{Z} = \frac{T}{m}$	$R\ddot{R} - R^2 \omega^2 = Z\ddot{Z} = \frac{T}{\langle m \rangle}$

In one component case there's one difference: $m \iff \langle m \rangle$:

$$\langle m \rangle = \frac{\sum\limits_{i} m_{i} n_{i,r}}{\sum\limits_{i} n_{i,r}} \approx 280 \text{ MeV}.$$
 (42)

CONCLUSION

The X, Y and Z scales are independent of the type of particles!

I. Introduction

Motivation

EQUATIONS
HYDRO EQUATIONS
BEFORE THE
REHADRONIZATION
AFTER THE
REHADRONIZATION

ATE DIFFERENTIAL QUATIONS

EQUATIONS SOLUTIONS FOR κ HYDRO FIT

V. Crossover Boundary conditions

Multi-component solution Time dependence

V. Observable Inverse slope HBT-radii

VI. SUMMA

$$R_0 = Z_0 = 5 \text{ fm}$$

 $\dot{R}_0 = \dot{Z}_0 = 0$
 $\theta_0 = 0, \ \omega_0 = 0.05 \text{ c/fm}$
 $T_f = 100 \text{ MeV}, \ \langle m \rangle = 280 \text{ MeV}$

I. Introduction
Motivation
Inverse slope

EQUATIONS
HYDRO EQUATIONS
BEFORE THE
REHADRONIZATION
AFTER THE
REHADRONIZATION

II. Equation of tate

DIFFERENTIAL
EQUATIONS
SOLUTIONS FOR κ
HYDRO FIT

BOUNDARY
CONDITIONS
MULTI-COMPONENT

Time dependence

V. Observable Inverse slope HBT-radii

VI. SUMMA

TIME DEPENDENCE

At the chemical freezeout temperature:

$$\frac{1}{+\kappa_c} < \frac{T_c}{\langle m \rangle} \tag{43}$$

The medium has a second "explosion", that starts just after the conversion to the hadron gas!

Conclusion

Non-relativistic approximation breaks down when R and Z becomes too large, search for relativistic generalization started!

=	

I. Equation o

DIFFERENTIAL
EQUATIONS
SOLUTIONS FOR K
HYDRO FIT

IV. CROSSOVER BOUNDARY CONDITIONS MULTI-COMPONENT SOLUTION

Time dependenc V. Observables

Inverse slope
HBT-radii

VI. SUMMAF

VII. Bibliography

Inverse slope	Single-component	Multi-component
	$T_x = T_f + m \dot{X_f}^2$	$T_{x,i} = T_f + m_i \dot{X}_f^2$
Without rot.[4]	$T_{\mathbf{y}} = T_{\mathbf{f}} + m \dot{Y_{\mathbf{f}}}^2$	$T_{\mathbf{y},i} = T_{\mathbf{f}} + m_i \dot{Y}_{\mathbf{f}}^2$
	$T_z = T_f + m \dot{Z_f}^2$	$T_{z,i} = T_f + m_i \dot{Z}_f^2$
	$T_{x} = T_{f} + m\left(\dot{R}_{f}^{2} + \omega_{f}^{2}R_{f}^{2}\right)$	$T_{x,i} = T_f + m_i \left(\dot{R_f}^2 + \omega_f^2 R_f^2 \right)$
With rot. [5]	$T_{x} = T_{f} + m \left(\dot{R}_{f}^{2} + \omega_{f}^{2} R_{f}^{2} \right)$ $T_{y} = T_{f} + m \left(\dot{R}_{f}^{2} + \omega_{f}^{2} R_{f}^{2} \right)$	$T_{\mathbf{y},i} = T_{\mathbf{f}} + m_{i} \left(\dot{R_{\mathbf{f}}}^{2} + \omega_{\mathbf{f}}^{2} R_{\mathbf{f}}^{2} \right)$
	$T_z = T_f + m \dot{Z_f}^2$	$T_{z,i} = T_f + m_i \dot{Z}_f^2$

Simple method:

$$m o m_i$$

$$T_j \rightarrow T_{j,i}$$

Linear m_i dependence:

$$T_{j,i} = k_1 \cdot \mathbf{m}_i + k_2 \tag{44}$$

EQUATIONS HYDRO EQUATIONS BEFORE THE REHADRONIZATION AFTER THE REHADRONIZATION

DIFFERENTIAL EQUATIONS SOLUTIONS FOR

HYDRO FIT IV. CROSSOVER BOUNDARY

MULTI-COMPONEN SOLUTION

'I'IME DEPENDEN V. Observables

V. Observable Inverse slope HBT-radii

VI. SUMMAR

$$T_{j,i} = k_1 \cdot \mathbf{m}_i + k_2 \tag{45}$$

Simple method:

$$m \to m_i$$
 $R_i \to R_{i,i}$

Linear m_i dependence:

$$R_{j,i}^{-2} = c_1 \cdot m_i + c_2 \tag{46}$$

Kasza, Csörgő

I. Introduction

Motivation

Inverse slope

1. Basic
CQUATIONS
HYDRO EQUATIONS
BEFORE THE
REHADRONIZATION
AFTER THE
REHADRONIZATION

DIFFERENTIAL
EQUATIONS
SOLUTIONS FOR 6

IV. CROSSOVER
BOUNDARY
CONDITIONS
MULTI-COMPONENT
SOLUTION

V. Observabl Inverse slope HBT-radii

VI. SUMMA

EQUATIONS HYDRO EQUATIONS BEFORE THE REHADRONIZATION AFTER THE REHADRONIZATION

III. Equation of state

EQUATIONS
SOLUTIONS FOR κ HYDRO FIT

IV. CROSSOVER BOUNDARY CONDITIONS MULTI-COMPONENT SOLUTION

V. Observabl Inverse slop HBT-radii

VI. SUMMARY

$$R_{j,i}^{-2} = c_1 \cdot \mathbf{m}_i + c_2 \tag{47}$$

REHADRONIZATION

DIFFERENTIAL EQUATIONS
SOLUTIONS FOR K

IV. CROSSOVER
BOUNDARY
CONDITIONS
MULTI-COMPONENT

Time dependen

V. Observabl Inverse slopi HBT-radii

VI. SUMMARY

- ▶ Rehadronization: crossover ⇒ simple boundary conditions
- ► Take into consideration the multi-component scenario
- ▶ Introduce scales independently from the type of particles
- ▶ Gain a similar dynamical equation to the one-component case
- ► The multi-component scenario does not complicate the description
- ▶ Difference: mean mass weighted by the number of particles
- ► The hadron gas has an exploding dynamics
- ▶ We need the relativistic formalism
- \blacktriangleright $\theta_f(T_0)$ is on progress
- ▶ Inverse slope parameters: $T \longrightarrow T_i$
- ► HBT-radii: $R \longrightarrow R_i$

VII. BIBLIOGRAPHY

- [1] PHENIX Collaboration: arXiv:nucl-ex/0307022
- [2] Sz. Borsányi, G. Endrődi et al.: arXiv:1007.2580
- [3] T. Csörgő, M.I. Nagy: arXiv:1309.4390
- [4] T. Csörgő, S.V. Akkelin et al.: arXiv:hep-ph/0108067v4
- [5] T. Csörgő, M.I. Nagy, I.F. Barna: arXiv:1511.02593v1
- [6] D. Kincses: talk at CPOD 2016

EXACT HYDRO SOLUTIONS

Kasza, Csörgő

- I. Introduction
 Motivation
 Inverse slope
- EQUATIONS
 HYDRO EQUATIONS
 BEFORE THE
 REHADRONIZATION
- REHADRONIZATION III. EQUATION OF
- DIFFERENTIAL EQUATIONS SOLUTIONS FOR κ
- IV. CROSSOVER
 BOUNDARY
 CONDITIONS
 MULTI-COMPONENT
- Time dependen

 V. Observables

 Inverse slope

VI. SUMMAF

EXACT HYDRO SOLUTIONS

Kasza Csörcő

I. Introduction
Motivation

I. Basic quations Hydro equat:

BEFORE THE REHADRONIZATION AFTER THE REHADRONIZATION

II. Equation of tate

EQUATIONS
SOLUTIONS FOR κ HYDRO FIT

BOUNDARY
CONDITIONS
MULTI-COMPONENT
SOLUTION

Time dependenc V. Observables

HBT-radii

VI. SUMMA

EXACT HYDRO SOLUTIONS

KASZA CSÖRGŐ

I. Introduction
Motivation

EQUATIONS
HYDRO EQUATIONS
BEFORE THE
REHADRONIZATION

II. EQUATION OF

DIFFERENTIAL EQUATIONS SOLUTIONS FOR κ

BOUNDARY
CONDITIONS
MULTI-COMPONENT
SOLUTION

V. Observabl Inverse slopi HBT-radii

VI. SUMMAI

EXACT HYDRO SOLUTIONS

Kasza, Csörgő

I. Introduction Motivation

> i. Basic Quations Hydro equati

Before the rehadronization
After the rehadronization

I. Equation of

DIFFERENTIAL EQUATIONS
SOLUTIONS FOR K

BOUNDARY
CONDITIONS
MULTI-COMPONENT
SOLUTION

V. Observable

VI. SUMMARY