

Latest results of the TOTEM experiment at LHC

Nicola Minafra University of Kansas

On behalf of the TOTEM Collaboration

Outline

TOTal cross-section, Elastic scattering and diffraction dissociation Measurement the LHC

The TOTEM detector at the LHC

The TOTEM experimantal apparatus was designed to measure the Total Cross Section and to study Elastic Scattering and Diffraction Dissociation at the LHC

The TOTEM Roman Pot system

A Roman Pot is a movable section of the beam pipe that allows the insertion of a detector at few millimeters from the beam

4 Shielded RPs
for high-luminosity operation

4 Horizontal RPs

2 Cylindrical RPs
for time-of-flight detector

High intensity runs

- 4 Vertical RPs (per arm)
- 2 Shielded RPs
- Cylindrical RP

Dedicated runs

- 6 Vertical RPs

$$
\beta^{*}=90 \mathrm{~m}, 1 \mathrm{~km}, 2.5 \mathrm{~km}
$$

- 2 Horizontal RPs
- 1 Shielded RP

Total cross-section

Optical Theorem, Elastic $\frac{d \sigma}{d t}$ extrapolated to $\mathrm{t}=0$

$$
\sigma_{\mathrm{tot}}^{2}=\left.\frac{16 \pi(\hbar c)^{2}}{1+\rho^{2}} \frac{\mathrm{~d} \sigma_{\mathrm{el}}}{\mathrm{~d} t}\right|_{t=0}
$$

Explicit dependency on $\mathcal{L}: \quad \sigma_{\text {tot }}^{2}=\frac{16 \pi}{1+\varrho^{2}} \frac{1}{\mathcal{L}}\left(\left.\frac{\mathrm{~d} N_{\mathrm{el}}}{\mathrm{d} t}\right|_{0}\right.$

Measured using Roman Pots

$$
\begin{aligned}
& \boldsymbol{\sigma}_{\boldsymbol{t o t}}=\mathbf{9 8} . \mathbf{3} \pm \mathbf{2 . 8} \mathbf{~ \mathbf { m b }} \\
& \boldsymbol{\sigma}_{\boldsymbol{t o t}}=\mathbf{9 8 . 6} \pm \mathbf{2 . 2} \mathbf{~ m b} \quad \mathrm{EPL} 96(2011) 21002 \\
& \hline 1013) 21002
\end{aligned}
$$

Elastic + Inelastic measurement: no dependency on ρ

Measured using T1 and T2

$$
\boldsymbol{\sigma}_{\boldsymbol{t o t}}=\mathbf{9 9 . 1} \pm \mathbf{4 . 3} \mathbf{~ m b} \quad \mathrm{EPL} 101(2013) 21004
$$

Elastic + Inelastic measurement: no dependency on \mathcal{L}

$$
\sigma_{\mathrm{tot}}=\frac{16 \pi}{1+\varrho^{2}} \frac{\mathrm{~d} N_{\mathrm{el}} /\left.\mathrm{d} t\right|_{0}}{N_{\mathrm{el}}+N_{\mathrm{inel}}}
$$

$$
\boldsymbol{\sigma}_{\boldsymbol{t} \boldsymbol{t}}=\mathbf{9 8 . 0} \pm \mathbf{2 . 5} \mathbf{~ m b} \quad E P L 101(2013) 21004
$$

Total cross-section

on the scattering energy $\sqrt{ } /$ s

EPL 101 (2013) 21004-7 TeV $\sigma_{\mathrm{el}}=25.1 \pm 1.1 \mathrm{mb}$
$\sigma_{\text {inel }}=72.9 \pm 1.5 \mathrm{mb}$ $\sigma_{\text {tot }}=98.0 \pm 2.5 \mathrm{mb}$
(luminosity independent)

PRL 111 (2013) 012001 - 8 TeV
$\sigma_{\mathrm{el}}=27.1 \pm 1.4 \mathrm{mb}$
$\sigma_{\text {inel }}=74.7 \pm 1.7 \mathrm{mb}$
$\sigma_{\text {tot }}=101.7 \pm 2.9 \mathrm{mb}$
(luminosity independent)

Elastic scattering at $\sqrt{s}=7 \mathrm{TeV}, \beta^{*}=3.5 \mathrm{~m}$ (First measurement)


```
0.36< |t < 2.5 GeV}\mp@subsup{}{}{2
```

Exponential behavior $e^{-B|t|}$ for $|t|<0.47 \mathrm{GeV}^{2}$
Dip moves to lower $|t|$: proton becomes "larger"
Power low behavior $|t|^{-n}$ for $1.5<|t|<2.5 \mathrm{GeV}^{2}$

Elastic scattering at $\sqrt{s}=7 \mathrm{TeV}, \beta^{*}=3.5 \mathrm{~m}$

Selected reconstructed tracks in a RP transverse to the beam at 220 m.

Published in EPL 95 (2011) 41001

Correlation between the reconstructed proton scattering angles

Horizontal...
... and vertical
on both sides of the IP.

The observed
spread is due to the beam divergence.

Elastic scattering at $\sqrt{s}=7 \mathrm{TeV}, \beta^{*}=90 \mathrm{~m}$

Selected reconstructed tracks in a RP transverse to the beam at 220 m.

Published in
EPL 96 (2011) 21002
EPL 101(2013) 21002

Correlation between the reconstructed proton scattering angles

Horizontal...
... and vertical
on both sides of the IP.

The observed spread is due to the beam divergence.

Elastic scattering at $\sqrt{s}=7 \mathrm{TeV}, \boldsymbol{\beta}^{*}=\mathbf{9 0} \mathrm{m}$

Elastic scattering: non-exponentiality at low |t|

Elastic scattering: Coulomb interference

$\beta^{*}=1000 \mathrm{~m}$:	$\beta^{*}=90 \mathrm{~m}$:	fits:
- data with stat. unc.	v data with stat. unc.	- - SWY, constant
full syst. unc.	full syst. unc.	- Cahn/KL, constant
/, syst. unc. w/o norm.	(syst. unc. w/o norm.	- Cahn/KL, peripheral

Constant phase excluded with both Simplified WestYennie and Kundrát-Lokajicek models

Non-exponential hadronic amplitude:
Both peripheral and constant phase compatible with data

Preliminary results

 $\sqrt{s}=7 \mathrm{TeV}$

- $\beta^{*}=3.5 \mathrm{~m}$ $-\beta^{*}=90 \mathrm{~m}$
$\sqrt{s}=8 \mathrm{TeV}($ scaled $10 \times)$ $\beta^{*}=90 \mathrm{~m}$, PRELIMINARY!
—— $\beta^{*}=90 \mathrm{~m}$
$\beta^{*}=1000 \mathrm{~m}$
$\sqrt{s}=13 \mathrm{TeV}$ (arbitrary normalisation) $\beta^{*}=90 \mathrm{~m}$, VERY PRELIMINARY

Different physics regimes are accessible thanks to different LHC configurations
non-exponentiality confirmed at 13 TeV

Forward slope $B=\frac{d}{d t} \ln \left(\left.\frac{d \sigma}{d t}\right|_{t=0}\right)$ increase wrt previous experiments

No structures at high-|t| (rules out the "optical" models)

$$
\sqrt{s}=7 \rightarrow 13 \text { TeV: dip moves to lower }|t|
$$ Hints:

Outlook: Odderon searches

- Odderon $=$ (hypothetical) cross-odd partner of Pomeron
- overview of past Odderon searches
- comparison pp vs. anti-pp (dip): not applicable at LHC
- spin analyses: not applicable at LHC
- structures in d $\sigma / \mathrm{d} t$: where Pomeron contribution small
- high-|t|: disfavoured by 13 TeV measurements
- low- $|t|$: shifts of ρ value \Rightarrow within reach of TOTEM
- Coulomb-nuclear interference at $\sqrt{s}=13 \mathrm{TeV}$
- needs special optics: $\beta^{*}=2500 \mathrm{~m}$
- $|t|=6 \cdot 10^{-4} \mathrm{GeV}^{2}$ reachable
- ~ 1 week data-taking time approved in 2016

Single diffraction: Preliminary results at $\sqrt{s}=7 \mathrm{TeV}$

Corrections included:

- Trigger efficiency
- Proton acceptance \& reconstruction efficiency
- Background subtraction
- Extrapolation to $\mathrm{t}=0$

Missing corrections:

- Class migration - ξ resolution \& beam divergence effects

Estimated uncertainties:
B~15\%; $\sigma \sim 20 \%$
TOTEM preliminary:
OSD $=6.5 \pm 1.3 \mathrm{mb}$
3.4 GeV $<M_{\text {diff }}<1.1 \mathrm{TeV}$

Analysis of very high mass
SD events ongoing
courtesy of H. Saarikko

Summary

- Total cross-section measurements at $\sqrt{ } \boldsymbol{s}=7 \mathrm{TeV}$ and 8 TeV with a luminosity independent method.
- Published proton-proton elastic analysis results at $\sqrt{ } s=7 \mathrm{TeV}$ and 8 TeV with $\beta^{*}=3.5 \mathrm{~m}, 90 \mathrm{~m}, 1000 \mathrm{~m}$.
- Non-exponentiality of the differential cross-section at low- $|\mathrm{t}|$ at $\sqrt{ } \boldsymbol{s}=8 \mathrm{TeV}$ and $13 \mathrm{TeV}\left(\beta^{*}=90 \mathrm{~m}, 1000 \mathrm{~m}\right)$.
- Hadronic-Coulomb interference at $\sqrt{ } \boldsymbol{s}=8 \mathrm{TeV}$ with $\beta^{*}=1000 \mathrm{~m}$ optics.
- 1st determination of the ρ parameter at the LHC with CNI.
- Ongoing analyses at $\sqrt{ } \boldsymbol{s}=2.76 \mathrm{TeV}$ and $\sqrt{ } \boldsymbol{s}=13 \mathrm{TeV}$ data.
- About 1 week data taking time foreseen in 2016 at 13 TeV with $\beta^{*}=2500 \mathrm{~m}$.

References:

F. Nemes, TOTEM measurements of cross-sections at LHC, 3rd Elba Workshop on Forward Physics @ LHC Energy, May 2016
J. Kaspar, TOTEM, QCD at Cosmic Energies - VII, May 2016

Backup slides

Tricks to obtain lower |t|

Elastic scattering : Coulomb interference - Fits

- constant phase excluded (with both SWY and KL formulae) \Rightarrow application of SWY formula excluded too
- peripheral phase not excluded by data, but disfavoured
- ρ value outside a consistent pattern of other fits and theoretical predictions
- number of theoretical reasons for non-exponential hadronic amplitude

\Leftarrow non-exponential hadronic amplitude
- both constant and peripheral phases compatible with data \Rightarrow centrality not necessity

TOTEM \& CMS

TOTEM

LHC experiment dedicated to measurement of:
total cross-section, elastic scattering and diffractive processes
Designed to study rapidity gaps, particles in very forward region, surviving protons

TOTEM + CMS

both experiments at LHC Interaction Point 5
excellent pseudorapidity coverage: optimal for hard diffraction studies
cooperation mode: independent experiments and DAQ, exchange of triggers for off-line syncronization

CT-PPS (CMS-TOTEM Precision Proton Spectrometer)

all sub-detectors fully integrated under CMS
Infrastructure for high luminosity and high-pileup configurations of the LHC: RF optimized RP, timing and pixel
detectors

Diamond timing detector for Cylindrical RP

Roman Pot insertion in 2016

Roman Pot insertion allowed at 15 o from June 2016!
Before:
2 hours after declaration of stable beam the RPs could be inserted at $15 \sigma+0.5 \mathrm{~mm}$.
The second fill of each intensity step the 0.5 mm margin was removed and then subsequent insertions were possible

Successful insertion with 2244 bunches (max in 2015)

Temperature of the Cylindrical Roman Pot

Timeseries Chart between 2016-05-20 00:06:00.000 and 2016-05-21 23:10:32.191 (LOCAL_TIME)
\rightarrow XRPH.E6L5.B2:LU:TEMPFLOUT \rightarrow XRPH.E6L5.B2:MEAS_LVDT_LU

