

Measurements of inclusive and differential Drell-Yan cross sections with the ATLAS detector at 8 and 13 TeV

Trofymov Artur on behalf of the ATLAS Collaboration

Low-x 2016, Gyöngyös, 09.06.2016

Introduction

Drell-Yan processes:

- Allows the extraction of the structure functions of the beam hadrons
- Provides a precision test of pQCD
- Different sensitivity to up-type, down-type quarks and antiquarks near and outside Z peak (γ^* dominates outside)
- Sensitive to the photon PDF through the photon-induced (PI) process ($\gamma\gamma \to \ell\ell$): $\gamma \sim \ell^+$

Cross section ratios measurements are powerful tools to constrain PDFs and benefit from the cancellation of some experimental uncertainties

Measurement motivation:

- Offers constraints on the large x anti-quark PDFs
- lacktriangle Sensitive to the photon PDF (expected to contribute at large $|\Delta\eta_{\ell\ell}|$, small $|y_{\ell\ell}|$, large $m_{\ell\ell}$

Dominant background contribution

- lacktriangle Top (tar t and Wt)
- Multi-jet
- ightharpoonup Diboson (WW, WZ, ZZ)

Photon-induced process contribution:

1% (except high $m_{\ell\ell}$ and large $\Delta\eta_{\ell\ell}$ region)

Dominant systematic uncertainty sources

- Top background estimation
- Multi-jet background estimation
- Electron energy scale
- Muon reco. efficiency correction
- Muon momentum scale calibration

Double-differential cross sections:

Good agreement between data and predicted results

- Combined fiducial cross section at Born level compared to NNLO pQCD calculations
- ▶ Theoretical predictions are calculated with FEWZ 3.1 using MMHT14 PDF set

Single-differential cross section

full window

restricted range

- Contribution of non-resonant PI process included. Estimated at LO using photon PDF.
 - \rightarrow Reaches 15%
 - \rightarrow In the region where PI contribution is large the PI uncertainty dominates the total uncertainty band
- At low mass, the differences between the predictions are larger than the total uncertainty of the measurement
 - \rightarrow Potential to constrain PDFs

Ratio of theoretical calc. to combined double-differential cross section

Impact of the measured results on photon PDF sets

- ▶ Bayesian reweighing was used for MC replica representing NNPDF2.3qed photon PDF (to get impact of the data on PDF set)
 - ightarrow Based on χ^2 minimization (replicas not describing well get smaller weight assigned)
- Shaded area indicates new PDF after inclusion of the data
- Large reduction of the uncertainty confirms the strong sensitivity of this data to the photon PDF

- Measurements are performed using data collected at $\sqrt{s}=13~TeV$ corresponding to an integrated luminosity of $81pb^{-1}$
- Cross section ratios measurements benefit from the cancellation of luminosity, some experimental uncertainties, and are powerful tools to constrain PDFs
 - \rightarrow W,Z analysis selections are **fully synchronised** to maximise the cancellation

Fiducial volume defined at the Born-level:

$$p_T^{\ell} > 25 \; GeV \qquad |\eta^{\ell}| < 2.5 \qquad p_T^{\nu} > 25 \; GeV$$
 $66 < m_{\ell\ell} < 116 \; GeV \qquad m_T^W > 50 \; GeV$

Submitted to: Phys. Lett. B, arXiv:1603.09222

Lepton universality

- Provide a test for both channels before combining
- Rw and Rz evaluated taking into account correlations in the systematic uncertainties
- → Lepton reconstruction and identification are naturally uncorrelated between electron and muon channel
- \rightarrow EWK bkg. sources are treated as uncorrelated between W and Z channels and 100% correlated for different W and Z channels.

Correlation coefficients

	W^-	W^+	\overline{Z}
$\overline{W^{-}}$	1	0.93	0.18
W^+		1	0.19
Z			1

- Combination of the W^+,W^- and Z fiducial cross sections is performed to improve the precision
- Combination is performed with HERAverager tool
- Results agree well with Standard Model expectations

arXiv:1603.09222

- Total and fiducial cross-sections (combined results):
- \rightarrow Electron and muon channels are combined at Born level using χ^2 minimization technique. The combination yields a good $\chi^2/N_{d.f.}=3.0$ / 3

▶ DYNNLO1.5 is used for the central values of the predictions

- Measured energy dependence of the total W and Z production cross sections is in good agreement with theoretical predictions
- NNLO QCD and NLO EW predictions calculated using CT14nnlo PDF with the FEWZ
- All data points displayed with their total uncertainty
- Theoretical uncertainties on the cross section predictions are not shown

Fiducial cross-sections ratios:

- Complete cancellation of luminosity uncertainty and partial cancellation of lepton-ID and trigger systematic
- $^{ullet}\,W^+$ to W^- cross sections ratio is sensitive to the difference of u_v and d_v valence-quark distributions at low Bjorken-x
- $lackbox{W}^\pm$ to Z ratio is sensitive to **strange-quark** distribution
- lacktriangle Dominant source of uncertainty in W^+ to W^- ratio is from uncorrelated part of multi-jet bkg.
- lacktriangle Dominant source of uncertainty in W^\pm to Z is **multi-jet bkg. and jet energy scale/resolution**

tt / Z Cross Sections Ratio at 13 TeV

- ' $t\bar{t}$ production dominated by gg process while Z production is more sensitive to $q\bar{q}$
- $ightarrow R_{tar{t}/Z}$ provide constraints on the ratio of gluon to sea-quark parton distributions in the proton
- Total cross-sections ratio:

$$R_{t\bar{t}/Z} = \frac{\sigma_{t\bar{t}}}{0.5 \left(\sigma_{Z \to ee} + \sigma_{Z \to \mu\mu}\right)}$$

$R_{t\bar{t}/Z} = 0.445 \pm 0.027(stat) \pm 0.028(syst) = 0.445 \pm 0.039$

Uncertainty cancellation

Uncertainty (%)	$\sigma_{Z \rightarrow ee}$	$\sigma_{Z o \mu\mu}$	$\sigma_{tar{t}}$	$R_{t\bar{t}/Z}$
Data statistics	0.5	0.5	6.0	6.0
tt NLO modelling	-	-	2.2	2.2
$t\bar{t}$ hadronisation	_	-	4.5	4.5
Initial/final state radiation	-	-	1.2	1.2
Parton distribution functions $(t\bar{t}, Wt)$	_	-	1.4	1.4
Single-top modelling	_	-	0.5	0.5
Single-top/ $t\bar{t}$ interference	_	-	0.1	0.1
Single-top Wt cross-section	_	-	0.5	0.5
Diboson modelling	_	-	0.1	0.1
Diboson cross-sections	_	-	0.0	0.0
Z+jets extrapolation	_	-	0.2	0.2
Electron energy scale/resolution	0.2	-	0.2	0.1
Electron identification	3.8	-	3.2	1.3
Electron charge identification	0.8	-	-	0.4
Electron isolation	1.0	-	1.1	1.2
Muon momentum scale/resolution	_	0.1	0.1	0.0
Muon identification	-	0.9	0.5	0.1
Muon isolation	-	0.5	1.1	1.1
Lepton trigger	0.5	1.1	0.8	0.7
Jet energy scale	-	-	0.3	0.3
Jet energy resolution	_	-	0.1	0.1
b-tagging	_	-	0.3	0.3
Misidentified leptons	_	-	1.4	1.4
Pileup modelling	0.9	0.9	-	0.9
Z acceptance	1.5	1.5	-	1.5
Z backgrounds	0.1	0.1	-	0.1
Analysis systematics	4.4	2.3	6.7	6.3
Integrated luminosity	9.0	9.0	10.0	1.0
Total uncertainty	10.0	9.3	13.5	8.8

ATLAS-CONF-2015-049

Summary

High mass DY measurement at 8 TeV:

- Combined cross sections achieve an experimental **precision of better than 1%** at low $m_{\ell\ell}$, excluding the overall luminosity uncertainty of 1.9%
- Theoretical uncertainties arising from PDFs are found to be larger than the measurement uncertainties, indicating potential for proton PDF constraints
- Bayesian reweighting (using data) method showed dramatic reduction of the uncertainties on the photon PDF

W / Z cross sections ratio:

- Extracted with a precision of few % (cancellation of several experimental uncertainties and luminosity uncertainty)
- The measurements agree well with the predictions and the experimental precision is comparable to the PDF uncertainties (**potential constraining power**)

tt / Z cross sections ratio:

Provides constrain on the ratio of gluon to sea-quark parton distribution

Backup slides

Measurements are performed using data collected at $\sqrt{s}=13~TeV$ corresponding to an integrated luminosity of $81pb^{-1}$

Z channels : $t\bar{t}$ - 0.24% for electron and muon channels

W channels multi-jet:

8% and 10% for W^+ and W^- in electron channel

3.5% and 4% for W^+ and W^- in muon channel

	W^+	W^-	Z		
	Electron channel (value ± stat ± syst ± lumi)				
Signal events	$228060 \pm 510 \pm 4920 \pm 200$	$177890 \pm 450 \pm 6110 \pm 180$	$34865 \pm 187 \pm 7 \pm 3$		
Correction C	0.602 ± 0.012	0.614 ± 0.012	$0.552^{+0.006}_{-0.005}$		
$\sigma^{ m fid}[m nb]$	$4.68 \pm 0.01 \pm 0.14 \pm 0.10$	$3.58 \pm 0.01 \pm 0.14 \pm 0.08$	$0.781 \pm 0.004 \pm 0.008 \pm 0.016$		
Acceptance A	0.383 ± 0.007	0.398 ± 0.007	0.393 ± 0.007		
$\sigma^{ m tot}[m nb]$	$12.23 \pm 0.03 \pm 0.42 \pm 0.27$	$9.00 \pm 0.02 \pm 0.39 \pm 0.20$	$1.987 \pm 0.011 \pm 0.041 \pm 0.042$		
	Muon channel (value ± stat ± syst ± lumi)				
Signal events	$237720 \pm 520 \pm 2210 \pm 410$	$183180 \pm 460 \pm 2520 \pm 360$	$44706 \pm 212 \pm 9 \pm 4$		
Correction C	0.653 ± 0.012	0.650 ± 0.012	0.711±0.008		
$\sigma^{ m fid}[m nb]$	$4.50 \pm 0.01 \pm 0.09 \pm 0.10$	$3.48 \pm 0.01 \pm 0.08 \pm 0.08$	$0.777 \pm 0.004 \pm 0.008 \pm 0.016$		
Acceptance A	0.383 ± 0.007	0.398 ± 0.007	0.393 ± 0.007		
$\sigma^{ m tot}[m nb]$	$11.75 \pm 0.03 \pm 0.33 \pm 0.27$	$8.75 \pm 0.02 \pm 0.25 \pm 0.20$	$1.977 \pm 0.009 \pm 0.041 \pm 0.042$		

- Cross-section definition: $\sigma^{tot} = \frac{\sigma^{fid}}{A} = \frac{N-B}{A \cdot C \cdot L}$
- Main systematic sources:

 $Z \rightarrow ee, \mu\mu$: lepton reco. and id. (0.9%)

 $W^\pm \to e^\pm
u, \mu^\pm
u$: jet energy scale and resolution (~ 1.7%)

