Precision studies of Drell-Yan p_T distributions and polarization angular coefficients in Z boson decays with the ATLAS detector

Lowx 2016, June 2016

Overview

- Motivation for these measurements
- Details of
 - Z/γ^* transverse momentum and ϕ^*
 - Angular coefficients A_i
- Whats next?

Motivation

• Behavior of different MC modeling approaches

Motivation

Measurement of the Transverse Momentum p_T

Measurement of p_{T}^{ll} and ϕ_{η}^{*}

Kristof Schmieden

Measurement of $p_{\rm T}^{ll}$ and ϕ_{η}^{*}

Kristof Schmieden

$$\phi_{\eta}^{*} = \tan(\frac{\pi - \Delta \phi}{2}) \cdot \sin(\theta_{\eta}^{*})$$
$$\theta_{\eta}^{*} = \arccos(\tanh(\frac{\eta^{-} - \eta^{+}}{2}))$$

- Depends only on measured angles
 - Better resolution compared to momentum measurements
 - In particular for low pT values
 - $\sqrt{2}m_Z\phi_\eta^* \approx p_{\rm T}^{ll}$

Lowx 2016 - Gyöngyös, Hungary

• x-axes in Plots are aligned

7

Measurement of $p_{\rm T}^{ll}$ and ϕ_{η}^{*}

- Low range dominated by:
 - Non perturbative effects
 - Soft gluon resummation
 - ResBos predictions agree with data

- High range dominated by:
 - Emission of hard partons
 - ResBos predictions not consistent with data

Kristof Schmieden

- Comparison in 3 regions of m_{II}
- 2 individual Pythia tunes:
 - AZNLO done on 7 TeV data at Zpeak
 AU2
- Significant disagreement between simulation & data in peak region
- Also significant disagreement between PowHeg and Sherpa
 - Particularly for large ϕ^* values

Electroweak corrections

- Predictions low by ~15% in all m_{II} bins
- No significant impact of NLO EWK corrections

Expected due to softgluon emissions

Angular Coefficients Ai

A bit of Theory

Differential cross section for

$$pp \to Z/\gamma^* + X \to l^+l^- + X$$

$$\frac{d\sigma}{dp_T^Z \, dy^Z \, dm^Z \, d\cos\theta \, d\phi} = \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_T^Z \, dy^Z \, dm^Z}$$

$$\left\{ (1 + \cos^2 \theta) + \frac{1}{2} A_0 (1 - 3\cos^2 \theta) + A_1 \sin 2\theta \cos \phi \right. \\ \left. + \frac{1}{2} A_2 \sin^2 \theta \cos 2\phi + A_3 \sin \theta \cos \phi + A_4 \cos \theta \right. \\ \left. + A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi \right\}$$

Angular distributions parametrized by coefficients \mathbf{A}_{i}

- Rest frame of di-lepton system
- z-axis bisecting directions of incoming proton momenta
- Direction of z-axis defined by longitudinal boost of di-lepton system

A bit of Theory

Orthogonal polynomials used to A_i are neither input to theory parametrize angular distribution: calculations, nor simulations! $\left\langle P(\cos\theta,\phi)\right\rangle = \frac{\int P(\cos\theta,\phi)d\sigma(\cos\theta,\phi)d\cos\theta\,d\phi}{\int d\sigma(\cos\theta,\phi)d\cos\theta\,d\phi} \qquad \qquad <\frac{1}{2}(1-3\cos^2\theta) > = \frac{3}{20}(A_0 - \frac{2}{3})$ $<\sin 2\theta \cos \phi >= \frac{1}{5}A_1$ normalization of unpolarized cross section, also applied to all other P $<\sin\theta \cos\phi >= \frac{1}{4}A_3$ $< 1 + \cos^2 \theta >$ $<\frac{1}{2}(1-3\cos^2\theta)>=\frac{3}{20}(A_0-\frac{2}{3})$ longitudinal polarization interference term: $\sin^2\theta \sin 2\phi \ge \frac{1}{5}A_5$ $<\sin 2\theta \ \cos \phi >= \frac{1}{5}A_1$ longitudinal[®]transverse $<\sin\theta\sin\phi>=\frac{1}{4}A_7$ $<\sin^2\theta \cos 2\phi >= \frac{1}{10}A_2$ transverse polarization $<\sin\theta\cos\phi>=\frac{1}{4}A_3$ product of v-a couplings, sensitive to Weinberg angle $<\cos\theta>=\frac{1}{4}A_4$ 8/3 * forward backward asymmetry A_{FB}, sensitive to Weinberg angle non-zero already at LO $q\bar{q} \rightarrow Z/\gamma^* \rightarrow l^+ l^ <\sin^2\theta$ $\sin 2\phi >= \frac{1}{5}A_5$ $<\sin 2\theta \sin \phi >= \frac{1}{5}A_6$ Predicted to be 0 @ NLO Non zero contributions @ NNLO for large $p_T(Z)$ $<\sin\theta$ $\sin\phi>=\frac{1}{4}A_7$

Kristof Schmieden

Lowx 2016 - Gyöngyös, Hungary

Impact of higher order QCD corrections

• A₀-A₂: Sensitive to the Spin of the Gluon (Lam-Tung relation)

- exactly 0 @ NLO
- A2 changed 10% @ NNLO

Impact of higher order QCD corrections

- Only small impact in A_{1,3,4}
- No sensitivity with current measurement

The Measurement - Lepton Selection

- Data collected during 2012
 √s = 8 TeV, 20.3 fb⁻¹
- Measurement performed in 3 independent channels:
 - Muons
 - Electrons: central central
 - Electrons: central-forward
- Fiducial Volume:
 - CC & $\mu\mu$: $p_{\rm T} > 25 \,{
 m GeV} \, |\eta| < 2.4$
 - CF: $p_{\rm T} > 20 \, {\rm GeV} \, 2.5 < |\eta| < 4.9$
 - OS di-leptons $80 < m_{ll} < 100 \,\mathrm{GeV}$
- Backgrounds:
 - EW & ttbar from simulation
 - QCD multi-jet: data driven
- Signal simulation:
 POWHEG + Pythia

Analysis strategy

Angular distributions sculpted by fiducial acceptance

- Polynomials are "folded" into reconstruction space
 - Simulation used to model acceptance, efficiencies & resolution
 - 3D folding in $\cos\theta$, ϕ , p^{II}
- Folded polynomials (templates) fitted to measured angular distributions
- Angular coefficients A_i normalize the templates relative to each other
 - A_i extracted from fit
- Overall normalization done in $p_T(Z)$
- Fit implemented as maximum likelihood fit
 - Nuisance parameter for each systematic uncertainty incorporated
 - Background templates included

[>]olynomial value

Template value / 0.25

A glance at Uncertainties

• Breakdown of systematic uncertainties

Measurement Results - Compatibility ee / µµ

- Electron and Muon channels give consistent results
 - Similar for all A_i
- Regularization:

ATLAS

- Smooth fluctuations in results & uncertainties
- Increase correlation between bins

Unregularised

Kristof Schmieden

Lowx 2016 - Gyöngyös, Hungary

Measurement Results

• A₀ well described by fixed order calculations

• A₂ predicted too high for large $p^{Z}T$

► A₀ - A₂ predictions also off w.r.t. measurement

Impact of higher order effects not covered in simulation

Measurement Results

• A_{3,4} well described by fixed order simulations

• Those are sensitive to the Weinberg angle

- Equal to 0 @ NLO
- Higher order effects become visible

• Small discrepancy between measurement and simulation:

• Limitations of current simulations

Comparison of various Generators

Sherpa & PowHegBox show statistical unc. only!

- Significant differences between simulations
- DYNNLO gives best description of measured A₀
- No generator describes A0-A2
 (Best: Sherpa 2.1)
- Improvement from Sherpa 1.4 to 2.1

Conclusions & Outlook

Conclusions & Outlook

- Measurement of $p^{II}T \& \phi^*$:
 - \bullet ResBos models low ϕ * region well
 - ~10% discrepancy between simulation and measurement at Z-peak region
 - Higher order EW correction are sub-leading effects at current precision
- Measurement of the angular coefficients in Z-Boson decays:
 - Significant discrepancy between all studied simulations and the measured coefficient A₂
 - Only DYNNLO in agreement with other measured coefficients
 - A_i very sensitive probe to spin correlations in simulation process
 - Measurement could be used to extract SM parameters, e.g. the Weinberg angle

Analysis Acceptance * Efficiency for 3 considered channels

Kristof Schmieden

Lowx 2016 - Gyöngyös, Hungary