Forward Proton Detectors in Heavy Ion Runs

Rafał Staszewski

Forward Proton Detectors in Heavy Ion Runs

Janusz Chwastowski, Rafał Staszewski

Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN Cracow)

Low-x Meeting 2016 6 – 11 June 2016

Heavy ion collisions

Forward Proton Detectors in Heavy Ion Runs

Half-life of nuclides

Forward Proton Detectors in Heavy Ion Runs

> Rafał Staszowski

Proper time between production and reaching AFP: \sim 0.3 ns $_{_{3/11}}$

Transport

Forward Proton Detectors in Heavy Ion Runs

- MadX, up to my knowledge, only allows to transport particles of the beam
- Trick: find the momentum of the beam particle that would have the same trajectory as the particle in question

$$p' = rac{q_{ extsf{beam}}}{q_{ extsf{particle}}} p_{ extsf{particle}}$$

Position in AFP

Forward Proton Detectors in Heavy Ion Runs

Acceptance

Forward Proton Detectors in Heavy Ion Runs

Momenta of nucleons – Fermi gas model

Forward Proton Detectors in Heavy Ion Runs

Spread of positions

Forward Proton Detectors in Heavy Ion Runs

Acceptance with spreads

Forward Proton Detectors in Heavy Ion Runs

Rafał

Acceptance for other beams

Forward Proton Detectors in Heavy Ion Runs

Summary

Forward Proton Detectors in Heavy Ion Runs

- Forward proton detectors can potentially detect nuclear debris emerging in HI collisions from spectator nucleons
- New type of measurements?
- Measurement may be interesting from nuclear physics point of view
 - Very large Lorentz factor → possibility of observation of ultra-short lived nuclei
 - Acceptance to different nuclides can be extended by using different ions in the beam
- It may allow centrality determination in HI collisions
- Motivation for additional stations?