

BigPanDA Status

Kaushik De

Univ. of Texas at Arlington Alexei Klimentov

Brookhaven National Laboratory

OSG AHM, Clemson University March 14, 2016

- BigPanDA Overview
 - Goals and Plans
 - Accomplishments over the past 3 years
- What is happening now
 - And for the next 6 months
- Future of BigPanDA

"Next Generation Workload Management and Analysis System for BigData"

DOE ASCR and HEP funded project started in Sep 2012

- Generalization of PanDA Workload Management System as meta application, providing location transparency of processing and data management, for HEP and other data-intensive sciences, and a wider exascale community
- Program Managers : Rich Carlson (ASCR), Lali Chaterjee (HEP)
- Institutions :
 - Lead Institution : Brookhaven National Laboratory
 - Pis : Alexei Klimentov*, Sergey Panitkin, Torre Wenaus and Dantong Yu
 - Argonne National Laboratory :
 - PI : Alexandre Vaniachine
 - University Texas at Arlington :
 - Pis : Kaushik De, Gergely Zaruba
- July 2015 : Project extended until Dec 31 2016

WP1. Factorizing the code

 Factorizing the core components of PanDA to enable adoption by a wide range of exascale scientific communities

WP2. Extending the scope

 Evolving PanDA to support extreme scale computing clouds and Leadership Computing Facilities

WP3. Leveraging intelligent networks

Integrating network services and real-time data access to the PanDA workflow

WP4. Usability and Monitoring

- Real time monitoring and visualization package
- Schedule
 - Year 1. Setting the collaboration, define algorithms and metrics
 - Year 2. Prototyping and implementation
 - Year 3. Production and operations

WP1 Factorizing the core

- New Code repository.
 - Migration from CERN SVN to GitHub
 - New build system; distribution through RPMs (thanks OSG for collaborative effort)
- PanDA server improvements.
 - PanDA server consolidation: now one master branch that serves multiple experiments
 - Consolidated divergence into multiple branches over many years
 - Standardized installation thanks to collaboration with OSG
- PanDA pilot improvements.
 - Core pilot has been refactored to a generic (VO independent) version;
 - VO specifics are handled as plug-ins; execution backends are handled as plug-ins
- Multiple database backends.
 - Oracle database backend (ATLAS, AMS, COMPASS)
 - mySQL (running on EC2 PanDA server) LSST, ALICE
 - New PanDA instance with MySQL backend deployed in Amazon EC2
 - Instance tuned for multi-VO support
- Documented installation process for all components Kaushik De

WP2 Extending the scope

Extend PanDA job management to Clouds and HPC

- Commercial and academic clouds
 - Google, Amazon EC2, NECTAR, etc...
- Primary goal for HPC activity Leadership Computing Facilities
 - Titan@OLCF main target
 - Mira@ALCF, Ancelm, Ostrava (CZ), Archer (UK), Kurchatov (RF)
- See talk tomorrow by Frank/me on HPC's

- 27 PFlops (Peak theoretical performance). Cray XK-7
- 18,688 compute nodes with GPUs
- 299,008 CPU cores
- AMD Opteron 6200 @2.2 GHz (16 cores per node)
- 32 GB RAM per node
- NVidia TESLA K20x GPU per node
- 32 PB disk storage (center-wide Luster file system)
- >1TB/s aggregate FS throughput
- 29 PB HPSS tape archive

Titan Usage Last Month

Kaushik De

- Goal for PanDA
 - Direct integration of networking with PanDA workflow never attempted before for large scale automated WMS systems
- Pick a few use cases
 - Cases which are important to PanDA users
 - Enhance workload management through use of network
- Case 1: Improve User Analysis workflow
- Case 2: Improve Tier 1 to Tier 2 workflow
- Step by step approach
 - Collect network information
 - Storage and access
 - Using network information

- All work completed in first 2 years
 - Successful demonstrations overflow and automatic MCP
 - Results shown at SC15 and other meetings
- New implementation underway for "World Cloud"
 - Details in Fernando's talk earlier
 - Moving from demonstration to operation

Kaushik De

- New PanDA monitoring web application was developed based on Django framework
 - All of you know this daily as BigPanDA monitoring
 - Allows rapid development and easy extension

- Through ASCR project, PanDA has moved well beyond ATLAS
 - Collaborating with RADICAL group of Rutgers University and Oak Ridge LCF team (Shantenu Jha and Jack Wells)
 - Many joint papers and invited talks
- Collaboration between ATLAS, ALICE, nEDM experiments for efficient usage of opportunistic resources, especially HPC and LCF
- LSST evaluating PanDA for distributed data processing
- COMPASS and AMS02 installed their own PanDA instances
- Other communities getting involved

BigPanDA - Generalizing PanDA Beyond Grid and ATLAS

- WP1 continuing to improve packaging
 - Bi-weekly meetings, focusing on non-ATLAS experiments
 - Work carried out by core PanDA and people from other experiments
- WP3 networking demonstration completed
 - Ongoing work done by core PanDA and ADC teams
 - World Cloud, NWS, Configurator...
- WP4 BigPanDA monitoring big focus
 - New features being added continuously
- WP3 increasing LCF usage
 - Heavy focus of work
 - Collaborating with Rutgers CSE team and OLCF operations

Titan Backfill

- Submitted proposal to ASCR for continuation
 - Hope to hear back before summer
 - Focus on BNL+UTA+Rutgers+OLCF collaboration on Titan
 - Setup PanDA as a service on Titan for 'all' users
 - ATLAS (and ALICE) will benefit from big increase in CPU cycles