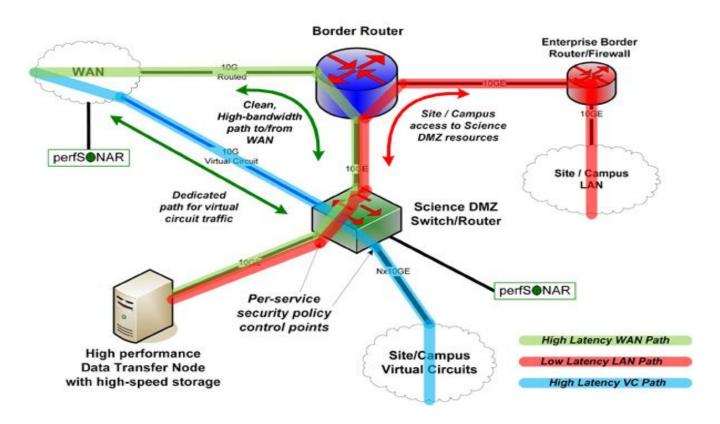
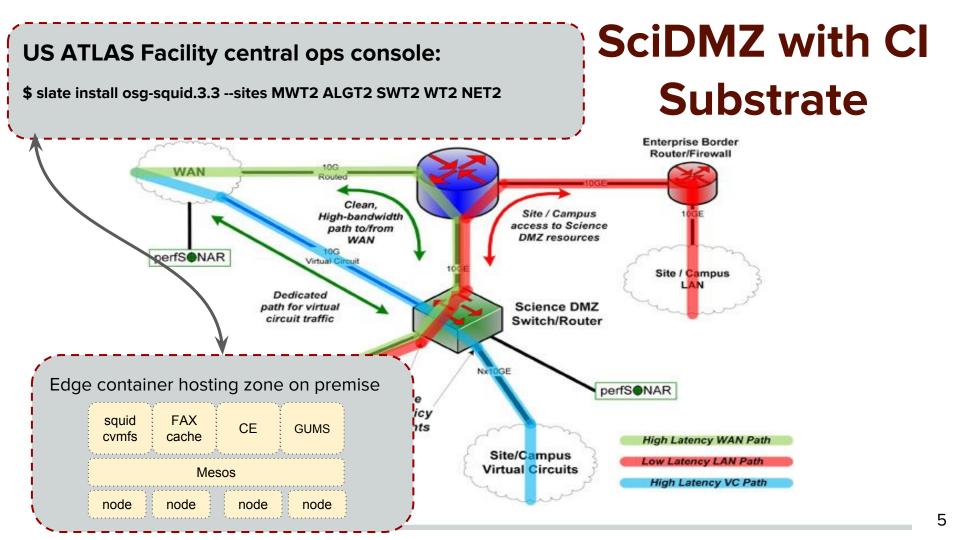
Ubiquitous Edge Platform

Lincoln Bryant Rob Gardner ATLAS EXPERIMENT


Ubiquitous & Easy "CI Substrate"


- Pioneer a new phase of advanced cyberinfrastructure deployment, allowing sites to flexibly evolve and sustain both on-premise and commercial cloud-based infrastructure
- Hosted services, such as CEs, data caches, squid, etc., could be centrally deployed onto "CI substrates" within a trusted CI zones and remotely operated, upgraded, and optimized for performance
- Extend to shared, opportunistic university clusters and cloud resources

Distributed Virtualized Data Centers

- Reduce IT footprint and ops burden
 - Centralize deployment & ops; reduce local admin cost
- Explore virtualized data center frameworks
 - E.g. container management over bare metal or VMs
- "Blue sky" goal
 - Establish a "trusted pattern" for a "CI substrate" on sites
 - Create distributed virtualized data center(s) overlaying the fabric substrate

Canonical SciDMZ

Deploying research software at the edge

Open Science Grid

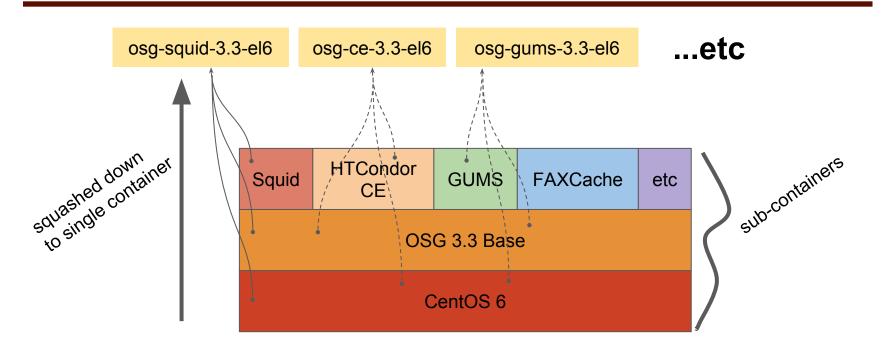
Xrootd Cache

Hardware

- Produce reference specification for supportability reasons
 - No more than 2-3 vendor options.
- Cloud providers like Joyent have done a really good job in this space. Something similar to:
 - https://docs.joyent.com/private-cloud/hardware/specs

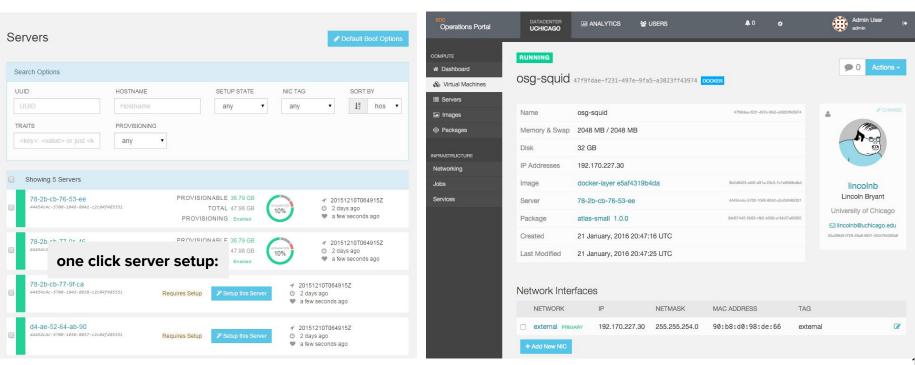
Operating system

- Many choices to evaluate in this area
- Traditional distributions:
 - EL, Ubuntu, etc
- Upcoming projects building around containers:
 - CoreOS, Boot2Docker, RancherOS, Project Atomic
- Exotic alternatives:
 - SmartOS (Solaris-based, emulating Linux kernel ABI)


Software

- Microservices-y architecture
 - Follow the Docker model of 1 application per container
- Service discovery and configuration tools
 - Consul, etcd, etc
- Scheduling
 - Kubernetes, Docker Swarm, Fleet, Mesos
 - (HTCondor?)

Software


- Dockerized applications created, vetted, maintained by central operations team.
 - Pushed by operators down to subscribed sites
 - Or, pulled by local site admins without interaction with central.
- Built-in monitoring
 - Graphite, ELK, etc

Containerizing Services

Frontier-Squid Containerized

Deployed in a hybrid cloud @ Midwest Tier 2:

12

Benefits for ATLAS

- Easily deploy Tier 2 and Tier 3 services
 - PROOF on Demand
 - Remote desktop / NX
 - FAX doors
 - XRootD caches
 - o etc

Current pain points

- Many points where human interaction is currently needed
 - Can we automate here?
- Is it possible for me to stand up, then destroy an entire ATLAS site in an automated way?
 - CE, SE, all interactions with AGIS, etc.

Security considerations

- Who has root on the machine?
- Can trusted users allocate resources and start containers remotely without having root?
 - Unprivileged containers are semi-working in newer kernels, but here be dragons..
- Ultimately: What is the correct privilege separation between owner and operator?

Other considerations

- Should there be a VPN / control channel setup such that these nodes are all accessible via the same private IP space?
- Can we use this platform as a testbed for things like SDN?
- What does it look like when we have multiple nodes per site?

Summary

- Platform for edge services on Science DMZs
- Container-based applications, maintained by a central team
- Built-in service discovery, configuration, and monitoring
- Flexible, adaptable to the needs of other projects.

Thank you! Questions?