CNM Developments on LGAD and iLGAD Detectors for Linear Colliders

<u>S. Hidalgo</u>, M. Baselga, M. Carulla, V. Fadeyev, P. Fernández, M. Fernández, D. Flores, Z. Galloway, C. Gallrapp, Z. Liang, A. Merlos, M. Moll, F.R. Palomo, G. Pellegrini, D. Quirion, H. Sadrozinski, M. Stricker, I.Vila

Centro Nacional de Microelectrónica, IMB-CNM-CSIC, Barcelona, Spain Santa Cruz Institute of Particle Physics SCIPP, Santa Cruz, CA, USA Instituto de Física de Cantabria IFCA-CSIC-UC, Santander, Spain Universidad de Sevilla, Sevilla, Spain CERN, Geneva, Switzerland

Outline

3

1

 Technological Developments @ CNM on LGAD & iLGAD Detectors

2

- PAD & microStrips LGAD
 Characterization
 - ✓ I-V, C-V
 - Gain Measurements
 - Laser
 - Alpha Particles
 - Gamma Irradiations

- **New iLGAD**. Low Gain P on P Detector
 - Position-Sensitive Detectors
 - Timing
 - Thin Detectors
 - **Double-Sided** LGAD
 - Pad LGAD @ Back-side
 - Ohmic Read Out @ Front-side
- microStrip iLGAD Simulation
 - Optimization
 - Technological
 - Electrical
 - Thinner Substrates for Timing
- First iLGAD Mask Set
- First iLGAD Run @ CNM

2/36

LGAD and iLGAD Fabrication Runs Status

- 2 Runs with Boron Multiplication Layer and 300 μm Substrate: Finished
 - Run 7509
 - 🗸 🛛 Run 7859
- 1 Run with Boron Multiplication Layer and 200 µm Substrate: Finished
 - Run 7782. Implantation Done at IBS (France)
- 1 Run with Gallium Multiplication Layer and 300 μm Substrate: Finished
 - Run 7735. Implantation Done at IBS (France)
- 1 Run with Boron Multiplication Layer and 300 µm Substrate: Finished
 - Run 8622. LGAD. 3 Gallium Wafers
- 1 Run with Boron Multiplication Layer and 300 μm Substrate: On Going
 - Run 8533. **iLGAD**. **3 Gallium Wafers**. **75 %** Run Steps Done
- O 1 Run with Boron Multiplication Layer and 6"-500 µm Substrate: On Going
 ✓ Run 8373. LGAD. It will end during June
- New Run with Boron Multiplication Layer and 200 µm Substrate: Waiting
 New Run with Gallium Multiplication Layer and 300 µm Substrate: Waiting

3/36

LGAD and iLGAD Fabrication Runs. At Glance

- LGAD Run Basic Information:
 - Cnm761 Mask Set
 - 8 Mask Levels
 - 70 Technological Steps
 - ✓ **Single** Side Process
 - Only Electron Collection
 - iLGAD Run Basic Information:
 - Cnm809 Mask Set
 - 12 Mask Levels
 - 100 Technological Steps
 - Double Side Process
 - Only Hole Collection
- **Common** Information:
 - Improve Surface Isolation (P-Stop. iLGAD @ Multiplication Side)
 - Different Terminations
 - Pad Detectors with Different Sizes
 - Strips and Pixel Detectors (iLGAD @ Front Side)
 - Detectors for Timing Applications
 - Test Structures to Measure the Multiplication Layer

Run 7509

 \checkmark

LGAD. Boron Multiplication Layer. 300 µm Substrate

Yield Improved

Run 7859

LGAD. Run 7859. I(V) and 1/C²(V)

- Wafer 2. Multiplication Layer Dose 1.8e13 atm/cm²
- Low Leakage Current. 10-30 nA @ 500 V
- Multiplication Layer Depletion Voltage ~ 30 V. Full Depletion Voltage ~ 80 V

LGAD. Run 6474. Gain Calibration with α 's from Am(241)

Instituto de Microelectrónica de Barcelona 💥 🔼 S 🔀 Centro Nacional del Microelectrónica

LGAD. Run 7859. TCT Measurements. IR. Back

LGAD. Run 7859. TCT Measurements. Red. Back

 Measurements done at CERN Silicon Lab by C. Gallrapp, M. Stricker. M. Fernandez and M. Moll., and at INFN Torino by N. Cartiglia

9/36

10/36

LGAD. Run 7509. Charge Collection. Alpha. Back Illumination

• Wafer 1. Multiplication Layer Dose 1.8e13 atm/cm²

Wafer 3. Multiplication Layer Dose 2.0e13 atm/cm²

Gamma Irradiated LGAD. Run 7859. Charge Collection. Alpha

- Wafers 1, 2. Multiplication Layer Dose 1.8e13 atm/cm²
- Wafers 3, 4. Multiplication Layer Dose 2.0e13 atm/cm²
- Gamma Irradiation with ⁶⁰Co

Gamma Irradiated LGAD. Run 7859. I(V)

- Wafer 2. Multiplication Layer Dose 1.8e13 atm/cm²
- Wafer 4. Multiplication Layer Dose 2.0e13 atm/cm²
- Gamma Irradiation with ⁶⁰Co
- Leakage Current Moderate Increase. From 10 nA to 100 nA @ 800 V

Gamma Irradiated LGAD. Run 7859. I(V) and 1/C²(V)

- Gamma Irradiation with ⁶⁰Co
- Leakage Current Moderate Increase. From 10 nA to 100 nA @ 800 V
- Multiplication Layer Depletion Voltage ~ 30 V for All Fluences
- Full Depletion Voltage Decreases if Fluence Increases

Strip LGAD. Segmented Amplification

First Approach. Strip LGAD. Segmented Amplification

- Runs **7509** and **7859**, with **Optimized P-well** Engineering
 - First prototypes characterization On Going
- Several Layouts with Different P-well Width and N-well Depth
- Constant Pixel Size

Strip outline

First Approach. Strip LGAD. SCIPP TCT Set Up

• Measurements done at SCIPP by Zachary Galloway, Giulio Pellegrini and Zhijun Liang

First Approach. Strip LGAD. SCIPP TCT. X Scan vs Voltage

First Approach. Strip LGAD. SCIPP TCT. X Scan vs Voltage

- **TCT** Basic Information:
 - ✓ Run 7859. W4-E2. 100 V
 - Red Laser from Top
 - All 3 Channels Connected
 - ✓ **DRS4** Circuit Amplifier
 - Strips Without Metal
 - Low Signal in the Middle of the Strip. Low Gain

First Approach. Strip LGAD. SCIPP TCT. X Scan vs Voltage

- **TCT** Basic Information:
 - ✓ Run 7859. W4-E2. 150 V
 - ✓ Red Laser from Top
 - All 3 Channels Connected
 - DRS4 Circuit Amplifier
 - Strips Without Metal
 - High Signal in the Middle of the Strip. High Gain

First Approach. Strip LGAD. SCIPP TCT. Signal Amp vs Bias

• Measurements done at SCIPP by Zachary Galloway, Giulio Pellegrini and Zhijun Liang

21/36

First Approach. Strip LGAD. IFCA TCT. PiN Strip

See Next Presentation by Iván Vila (IFCA)

Centro Nacional del Microelectrónica Instituto de Microelectrónica de Barcelona 💥 🔼 S 🔀

Gamma Irradiated LGAD. Run 7859. Inter-Strip Resistance

- Gamma Irradiation with ⁶⁰Co
- Inter-Strip Resistance Reduction @ 100 Mrad, for Every Reverse Bias and Sample

Second Approach. P on P Strip iLGAD: The "Inverse" LGAD

- Double-sided LGAD with pad-like multiplication structure in the back-side and ohmic read out strips, or pixels, in the front-side
- N on P vs P on P LGAD microStrips Comparison

P on P Strip iLGAD: The "Inverse" LGAD

- Double-sided LGAD with pad-like multiplication structure in the back-side and ohmic read out strips, or pixels, in the front-side
- First Design and Run. Include Pads, microStrips and pixelated iLGADs

iLGAD. P on P MicroStrips. 2D Simulation

• Three microStrips. Electric Field Distribution: Maximum value @ P-N Junctions

Centro Nacional del Microelectrónica

Instituto de Microelectrónica de Barcelona 🎇 CSIC

26/36

iLGAD. P on P MicroStrips. 2D Simulation

MicroStrips Simulation. Electric Field 2D Distribution @ V_{BR}

iLGAD. P on P MicroStrips. 2D Simulation

• MicroStrips I(V). Breakdown performances limited by Thickness

27/36

iLGAD. P on P MicroStrips. 2D Simulation. MIP

• Charge Collection (MIP) @ 100 V, 50 μm Thick

Centro Nacional del Microelectrónica Instituto de Microelectrónica de Barcelona 💥 CSIC

4.428+11 8.505+07 1.634+04 3.138+00 6.027+04

D6

х

iLGAD. P on P MicroStrips. 2D Simulation. MIP. Strip Center

Hole Density (MIP Strip @ 100 V, 50 μm Thick

27/JU

iLGAD. P on P MicroStrips. 2D Simulation. MIP. Strip Edge

iLGAD. P on P MicroStrips. 2D Simulation. MIP. Inter-Strip

Strip LGAD vs iLGAD. MIP Simulation. Gain Evolution

iLGAD. P on P MicroStrips. 2D Simulation. Timing

• MIP through the middle of the sensors (central strip) @ 500 V and 300 V (50 μm)

34/36

iLGAD. P on P MicroStrips. 2D Simulation. Timing

• MIP through the middle of the sensors (central strip) @ 100 V

Simulation MIP particle 100V

Conclusions

- Technological Developments @ CNM on LGAD & iLGAD Detectors
- PAD LGAD Shows
 - ✓ Gain: 3.7 8.4, Dose: 1.8e13
 - ✓ Gain: 8.3 44, Dose: 2.0e13
 - ✓ Good Homogeneity
- o microStrips LGAD Shows
 - Low Gain: 2.0 @ 200 V
 - Charge Collection. Center of Multiplication Area
- New iLGAD. Low Gain P on P Detector
 - Position-Sensitive Detectors
 - Thin Detectors
 - Fine Pitch
 - Timing
 - Thin Detectors
- o Double-Sided LGAD
 - Pad LGAD @ Back-side
 - Ohmic Read Out @ Front-side

- o microStrip iLGAD Simulation
 - **Optimization**
 - Technological
 - Electrical
 - Thinner Substrates for Timing
 - Detectors Shown Good
 Performances
 - μStrip iLGAD charge collection
 is better than μStrip LGAD
- o First Mask Set
 - microStrips
 - Pixels
- First iLGAD Prototypes
 - 12 Mask
 - 100 Steps
 - 5-6 Months
- First iLGAD Run Already Started
 @ CNM 35/36

Thank you for your attention !!!!

Instituto de Microelectrónica de Barcelona 💥 CSIC Centro Nacional del Microelectrónica

36/36

LGAD. Gallium Multiplication Layer. 300 µm Substrate

I-V, C-V on Wafer (Implantation @ IBS)

 LGAD Devices with Gallium Multiplication Layer have Similar I-V and C-V Characteristics than PiN Detectors. We do not Observe the Multiplication Layer Depletion

38/36

LGAD. Boron Multiplication Layer. 200 µm Substrate

- LGAD devices with 200 μm substrate have Low Breakdown Voltage Characteristics than 300 μm substrate Equivalent LGAD Detectors
- o **Doping** Level of the **Boron** Multiplication Layer is **Higher** than Expected by Simulations
- Neutron Irradiation at JSI Ljubljana to Reduce Boron Peak Concentration

