Status of CIEMAT Activities in the Development of Particle Accelerators

Luis García-Tabarés

Electrical Engineering Division

Department of Technology

CIEMAT

Cierro de Investigaciones Energéticas, Medicambientales

The Electrical Engineering Division at CIEMAT STRUCTURE

FACILITIES

Energy & Superconductivity (J. Camarillo)

Assembly Hall (J. Camarillo)

Main Offices (Moncloa)

Cierro de Investigaciones IDAD Energéticas, Medicambientales

Ongoing Projects and Collaborations

ACCELERATORS	POWER SYSTEMS	
Large Facilities \downarrow	Storage ↓	
E-XFEL	SA ² VE	
FAIR	ACEBO	
LHC Hi-Lumi (CERN)	ADIF/CETRAF	
CTF3/CLIC (CERN)	TRAIN2CAR	
FCC (CERN)		
ILC		
IFMIF	Generation 🗸	
TIARA	SUPERTURBINES	
Small Accelerators \downarrow	UNDIGEN 🗖	
AMIT CYCLOTRON	SEA-WEDGE	
UPC MICROTRON	IISIS	

GOBIERNO DE ESPAÑA DE ECONOMIA Y COMPETITIVIDAD Ciemat

y Tecnológica

The XFEL Contribution

Cierrot de Investigaciones Energieicas, Medicambientales y Tecnológicas

MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD

The E-XFEL Facility

E-XFEL (European X-Ray Free Electron Laser) is a 100 ns pulse laser source working in the band from 0.085 to 6 nm. It will be located inside DESY facilities in Hamburg.

It consists of a Superconducting LINAC (cavities & magnets) up to 17GeV and an array of undulators based on permanent magnets.

Present CIEMAT contribution to E-XFEL			
COMPONENT	ТҮРЕ	QUANTITY	
Superconducting Combined Magnets	SC Magnet	103	
Moving Tables (Movers)	Mechanics	101	
Electronic Control Racks	Electronics & Instrum.	101	
Phase Shifter Magnets	Special Magnet	Contrib. Failed	
NON- CIEMAT contribution to E-XFEL			
Superconducting Magnets Power Supplies	Electronics & Instrum	240	

XFEL

Superconducting Magnet for E-XFEL for the Main LINAC

Type: Combined	Quadrupole	Dipole (2)
Integrated Field	5.97 T	0.75E-3 Tm
Inner Diameter	94.4 mm	83.6 mm
Op. Current	50 A	
Technology	NbTi Superferric	
Industrialization	YES: Different prototypes at CIEMAT & Industry Series manufactured at Industry	

Cierro de Investigaciones

Superconducting Magnets for E-XFEL for the Main LINAC

Fabrication Process

CONOMIA CONOMIA MPETITWIDAD

CIEMAT Contribution to E-XFEL Superconducting Magnets for E-XFEL for the Main LINAC

CIEMAT Contribution	103 Combined Superconducting Magnets (CSM) for the Main LINAC
E-XFEL Contribution	Warm & Cold magnetic measurements. Quench Tests
Recognized Contribution Value	2.129.100 € (Prices corresponding to 2005)
Present Status	Contribution finished
Prototyping Phase	CIEMAT 5 CSM (2004-2010) // CIEMAT-Industry 3 CSM
Tendering Process	After Technical Specs. & Documents were issued by CIEMAT and approved by DESY, a tendering process was launched, 3 companies competed, being Trinos Vacuum Projects (subcontracting ANTEC) selected.
Fabrication at Industry	Fabrication started 2011/08 for a period of 26 months
Delivery Schedule	2012 15 CSM //2013 55 CSM //2014 32 CSM (5 CSM per month) //2015 1CSM
Quality Assessment Plan	Done by TUEV-Nord (Cryostats) . Rest at the companies, revised by CIEMAT
Testing	Partial testing & dimensional control at the company. Magnetic testing at DESY
Installation & Commissioning	Fully done by DESY

Centro de Investigaciones Energéticas, Medicambientales y Tecnolópicas

Moving Tables for E-XFEL

<u>2</u>	
Туре	2-axes Quadrupole Positioning Table
Range	±1.5mm
Repetitivity	≤1µm
Max Load to move	70 kg
Technology	St.Steel & Aluminium. Closed Loop
Industrialization	YES: Different prototypes at CIEMAT & Industry Series manufactured at Industry in two different batches.

Cierro de Investigaciones Energéticas, Medicambientales y Tecnolóticas

COMPETITIVIDAD

Moving Tables for E-XFEL

Centro de Investigaciones Energéticas, Medicambientales y Tecnológicas

DE ECONOMIA Y COMPETITIVIDAD

Moving Tables for E-XFEL

CIEMAT Contribution	97 Quadrupole Moving Tables (QMT) for Intersections
E-XFEL Contribution	4 QMT directly bought to the selected Spanish companies
Recognized Contribution Value	2.433.300 € including QMTs & ICRs (Prices corresponding to 2005)
Present Status	Contribution finished
Prototyping Phase	2 Prototypes built at CIEMAT with industrial collaboration. 5 Prototypes built at industry for pre-qualification > Improvements in the design & control system
Tendering Process	After Technical Specs. & Documents were issued by CIEMAT and approved by DESY, two tendering processes were launched. Production was split in two equal batches to reduce delivery time. One was awarded to RAMEN and the other to HTS.
Fabrication at Industry	Fabrication started May 2013 for a period of 24 months
Delivery Schedule	2013 10 QMT //2014 30 QMT //2015 9 QMT (up to 4 QMT per month)
Quality Assessment Plan	Done at the company and supervised by CIEMAT.
Testing	At the company using Tests Benches built by CIEMAT
Installation & Commissioning	Commissioned by CIEMAT @ Hamburg and installed by DESY

MECHANICS

Cierro de Investigaciones

y Tecnológicas

ICR for E-XFEL

Туре	Intersection Control Rack
Description	Control electronics for the Quadrupole Moving Tables and the Phase Shifter.
Dimensions	1000 x 500 x 500 mm
Technology	Forced air cooling and high security cabling. Based on Beckhoff Modules.
Industrialization	YES Different prototypes at CIEMAT & Industry Series manufactured at Industry.

Centro de Investigacione

y Tecnológicas

ICR for E-XFEL

Centro de Investigaciones Energéticas, Medicambientales y Templóticas

COMPETITIVIDAD

ICR for E-XFEL

CIEMAT Contribution to E-XFEL

CIEMAT Contribution	97 Intersection Control Racks (ICR) for Intersections
E-XFEL Contribution	4 ICRs directly purchased to the selected Spanish companies
Recognized Contribution Value	2.433.300 € including QMTs & ICRs (Prices corresponding to 2005)
Present Status	Contribution finished
Prototyping Phase	During 2012, 4 Prototypes were built at industry to qualify companies > Improvements in the design & control system
Tendering Process	After Technical Specs. & Documents were issued by CIEMAT and approved by DESY, a tendering processes was launched. Contract was awarded to PINE.
Fabrication at Industry	Fabrication started January 2014 for a period of 13 months
Delivery Schedule	2013 2 ICR //2014 92 ICR //2015 4 QMT (up to 8 ICR per month)
Quality Assessment Plan	Done at the company and supervised by CIEMAT.
Testing	At the company using a Test Bench built by CIEMAT
Installation & Commissioning	Commissioned by CIEMAT @ Hamburg and installed by DESY

Cierro de Investigaciones Energiticas, Medicarróbentales y Tecnolóxicas

DE ECONOMIA Y COMPETITIVIDAD

Phase Shifters for E-XFEL

600

Туре		Rare Earth Permanent Magnet
•••	First Field Integral	≤0.004 Tmm
•••	Second Field Integral	≤0.67 Tmm²
	Gap	10.5 ÷ 100 mm
•~	Technology	NbFeB Magnets + Pure Iron Yoke. Controlled air gap with stepping motors
	Industrialization	YES: Different prototypes at CIEMAT & Industry

Cierro de Investigaciones Energéticas, Medicambientales y Tecnológicas

MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD

Phase Shifters for E-XFEL

Centro de Investigaciones Energisicas, Medicambientales y Tecnolóteicas

COMPETITIVIDAD

Phase-Sifters for E-XFEL

CIEMAT Contribution	Initially 91 Phase Sifter Magnets (PSM). Finally 3 Protptypes done & intense R&D Activities
E-XFEL Contribution	None
Recognized Contribution Value	510.000 € (for the partial contribution)
Present Status	Contribution failed
Prototyping Phase	3 PSM Prototypes were made before 2010 at CIEMAT & Industry > Best results for the 1st Integral were above 6 mTmm. In 2011 XFEL imposed a Panel review to analyse the situation since there was a significant delay in the initial schedule, and specifications could not be achieved. Panel suggested XFEL to relax specifications since they seemed to be clearly beyond a reasonable state of the art. The recommendation was only partially admitted by them. Finally CIEMAT committed to supply PSM s with a 1st Field Integral above 10 mTmm for a series production and this was rejected by XFEL, being the end of the contribution.

Cierro de Investigaciones Energéticas, Medicambientales y Tecnológicas

MINISTERIO DE ECONOMIA Y COMPETITIVIDAD

Universidad Politécnica de Madrid Contribution to E-XFEL

Power Supplies for the Superconducting Combined Magnets

The Centro de Electronica Industrial (CEI) from the UPM is also contributing to E-XFEL with the following delivery

Туре	Bipolar Power Supply	
Output voltage	± 10 V	
Output Current	± 50 A	
Technology	Switch-Mode MOSFET-based Converters @ variable commutation frequency & PBC transformer	
Industrialization	YES Different prototypes at UPM (CEI) & Industry Series manufactured at Industry	
i i i i		

ELECTRONICS & INSTRUMENTATION

Ciernat Centra de Investigaciones

Universidad Politécnica de Madrid Contribution to E-XFEL

Power Supplies for the Superconducting Combined Magnets

UPM Contribution	240 Power Supplies (PS) for the SC Combined Magnets
E-XFEL/DESY Contribution	240 Control Boards to be integrated in the Power Supplies
Recognized Contribution	1.448.000 € (Prices corresponding to 2005)
Present Status	20 Prototypes PS for evaluation to be done at CEI
Prototyping Phase	5 Prototypes already built at the CEI
Tendering Process	After Technical Specs. & Documents were isssued by CEI, a tendering process was launched, 4 companies competed, being BTESA selected.
Fabrication at Industry	250 (240 + 10 spares) Units to be built at BETESA under supervision of CEI.
Delivery Schedule	2015/07 Quality Plan // 2015/10 20 PS //2015/12 80 PS //2016/02 150 PS
Quality Assesment Plan	Defined by CEI, developed by BTESA, followed-up by CEI
Testing	Critical component testing & complete Power Supply testing @ BTESA. Test bench developed by CEI
Installation & Commissioning	Commissioning @ XFEL by CEI. Final Installation including magnet connection by DESY

Centro de Investigaciones Energéticas, Medicambientales

y Tecnológicas

MINISTEUO DE ECONOMÍA Y COMPETITIVIDAD

DE ESPAÑO

The CLIC Project

Ciernote Cestro de Investigaciones Energéticas, Medicambientales y Tecnológicas

MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD

The CLIC/CTF3 Project

CLIC is a proposal for an up to 3TeV Linear Collider, which is based on a two beam scheme to achieve the required accelerating gradients. It uses non superconducting radiofrequency components which are called PETS for the drive beam and Accelerating Structures for the main beam. A validating test facility called CTF3 has already been successfully operated.

Present CIEMAT contribution to CTF3/CLIC			
ТҮРЕ	QUANTITY		
Resistive Magnet	2		
Resistive Magnet	15		
Mechanics	15		
Special Magnet	1+1		
Special Magnet	1		
RF	12 (Partial Contrib.)		
RF	1		
Future CIEMAT contribution to CLIC			
RF	TBD		
Hybrid Magnet	TBD		
	tion to CTF3/CLICTYPEResistive MagnetResistive MagnetMechanicsSpecial MagnetSpecial MagnetRFRFHybrid Magnet		

Centro de Investigaciones Energéticas, Medicambientales y Tecnolecias

DE ECONOMIA Y COMPETITIVIDAD

Kickers for CTF3

Tail Clipper

Extraction kicker

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Туре	Strip-Line Extraction kicker	Strip-Line Tail Clipper
N ^o of Modules	1	4
Deflection	5 mrad	1.2 mrad
Rise time	≤70 ns	≤5ns
Length	2000 mm	4 x 1625 mm
Op. Voltage	14.4 kV	4 x 2 kV
Technology	Full Stainless Steel Tapered Ends Transmission Line	
Industrialization	YES: Prototypes partially made at Industry	





# **Kickers for CLIC Damping Rings (in collaboration with IFIC)**





1 0.8	CST simulation measurement with HQ resistors	6		$\int \int $
0.6	6-		Nhhr	
0.4	4-	$\left( \right) \left( \right)$		$\mathbb{W}/\mathbb{W}$

0.5 f(GHz) 0.6

0.7

0.8

0.9

Туре	Damping Ring
N ^o of Modules	1
Deflection	1.5 mrad
Rise time	≤560 ns
Effective length	1700 mm
Op. Voltage	±12.5 kV
Technology	Stripline
Industrialization	YES: Prototype made at Industry



0.1

0.2

0.2

Magnitude S₁₁

Cierro de Investigaciones Energéticas, Medicambientales

y Tecnológicas

0.4

0.3



Туре	TBL PET	Double Length PET
Op. Frequency	12 GHz	12 GHz
Length	4 x CLIC	2 x CLIC
Technology	Warm in Octants	Warm in Octants: Minitank, Integrated Couplers
Industrialization	YES: Partial Supplies by Industry	



Centro de Investigaciones Energénicas, Medicambientales y Tecnológicas

ECONOMIA OMPETITIVIDAD

# The LHC Upgrade



Centro de Investigaciones Energiticas, Medicarribientales y Tecnológicas

MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD

#### **CONTRIBUTION BY PROJECTS**

# The LHC Upgrade

In a first phase, LHC has been working at 8 TeV and 75% of its nominal luminosity. After a 2 year shutdown, luminosity will be increased to 100% and energy to 14 Tev. From 2018 to 2021 it is foreseen to increase the luminosity to 200% and after 2023, it should be increased again by a factor of 5 to 10, after significant changes in the machine.



# High Luminosity LHC

Present CIEMAT contribution to LHC Upgrade and Hi Lumi LHC		
COMPONENT	ТҮРЕ	QUANTITY
Radiation Resistant SC Sextupole Corrector Magnet	SC Magnet	1
Radiation Resistant SC Octupole Corrector Magnet	SC Magnet	1
Participation in the Cabling for the LHC Long Shutdown	Manpower	8 man-year
Development of a Nested Dipole	Superconductor	1 Prototype
Participation in the development of Superconducting Links	HTc Superconductor	Prototyping
Participation in the development of a Static VAR Compensator	Solid State	Prototyping



# **Superconducting Magnets for LHC Hi-Lumi**







Sextupole



Туре	Sextupole	Octupole	
Integrated Field	0.055 Tm	0.035 Tm	
Physical Length	160 mm	160 mm	
Op. Current	100 A	100 A	
Technology	NbTi Superferric NbTi Superferric Rad. Resistant		
Industrialization	HI Lumi LHC Magnets will be based on this development		

GOBIERNO MINISTERIO DE ESPAÑA DE ECONOMÍA Y COMPETITIVIDAD Cierro de Investigaciones Energiticas, Medicambientales



#### MCBXS H&V Combined Corrector Dipole

Туре	Combined Corrector Dipole	
Integrated Field	2.5 Tm	
Physical Length	1200 mm	
Aperture	150 mm	
Technology	Nested NbTi Coils @ 1.9K	
Industrialization	Yes (TBD)	

UPDATED MILESTONES		
Feb 2015	Conceptual Desing	
Sep 2015	Fabrication Drawings	
Sep 2016 1st Prototype Finished		
Feb 2017 Tests @ CERN		
CERN: 50% Personnel & 100% Materials		
CIEMAL JU% PEISUINE & $100\%$ 1001110		



#### Cierro de Investigaciones

y Tecnológicas

#### **The QUACO Project**

The QUACO project draws together several research infrastructures with similar technical requirements in magnet development, which will allow the avoidance of unnecessary duplication of design effort and reduce overall cost through economies of scale using a **joint procurement process**. By pooling efforts, the partners in QUACO will act as a single buyer group with sufficient momentum for potential suppliers to consider the phased development of the requested magnets. QUACO's goal is to create a paradigm shift in the industrialization of the new generation of superconducting magnets.

QUACO Project is a self-contained and consistent part of the High Luminosity LHC Project, focusing on the design, development and procurement of superconducting magnets. The final result of the project will be 2 pilot magnets necessary for HI-LUMI LHC.



#### **Participants:**

- 1) The European Organization for Nuclear Research (CERN),
- 2) Commissariat A L'Energie Atomique Et Aux Energies Alternatives (CEA),
- 3) Centro de Investigaciones Energéticas, Medioambientales Y Tecnológicas (CIEMAT),
- 4) Narodowe Centrum Badan Jadrowych (NCBJ).

#### **Funding:**

Total cost in the proposal 6,647,895.00 € Maximum grant amount 4,653,523.88 €



#### Cierro de Investigaciones

#### **The FTECs Program**

The FTEC (Formacion en las TEcnologias del CERN) Trainee Programme has been established through a bilateral agreement between CERN and CIEMAT with the contribution of the SEIDI from the Ministerio de Economía y Competitividad, as well as the CDTI.



This programme is aimed at recent graduates from university or higher technical institutes seeking further training in a wide area of projects. Selected trainees will join a team working at CERN and have the opportunity to enlarge their knowledge through participation in the hi-tech activities of the laboratory, in fields such superconducting and resistive magnets, power converters and their associated electronics, cryogenics and vacuum technologies and electronics for detectors, including radiation resistance issues, and related activities on infrastructures with a potential industrial return.

#### Ciemat

# The FCC Project



MINISTERIO DE ECONOMIA Y COMPETITIVIDAD

# **The FCC Project**

The FCC Project

CERN has recently launched a feasibility conceptual study for post-LHC particle accelerator options, considering the technology research and development programs that would be required to build a future circular collider in the range of 100 TeV. Among other initiatives, an international collaboration called EuroCirCol has been awarded with a H2020 grant to address the main issues of the future machine.



/ / /		/ / / / / /
Present CIEMAT contribution to the EuroCirCol Project (FCC)		
WorK Package	WP Description	CIEMAT Contribution
WP1	Management, Coordination and Implementation	
WP2	Arc Design: Conceptual design of the largest fraction of the collider ring	
WP3	Design of the experimental insertion regions	
WP4	Design of the cryogenic beam vacuum system considering the enormous synchrotron radiation level	4,5 person year
WP5	High-Field superconducting magnet design for fields up to 16T	4,0 person year



Cierro de Investigaciones

# **The IFMIF Contribution**



MINISTERIO DE ECONÒMIA Y COMPETITIVIDAD

#### **CONTRIBUTION BY PROJECTS**

# **The IFMIF Project**

The Division also collaborates in the IFMIF project: a 40 MeV, 125 mA deuteron accelerator acting on a lithium target to generate neutrons to test materials for the first commercial fusion reactor : the DEMO. To validate the IFMIF concept, the so called EVEDA phase has been launched, including a Linear Accelerator (LIPAc) with a current of 125 mA and an energy of 9 MeV.



Present CIEMAT contribution to IFMIF-EVEDA			
COMPONENT	ТҮРЕ	QUANTITY	
Solenoid Magnets for the DTL	SC Magnet	8	
Bunchers for the Matching Section	RF	2	
Quadrupoles & Steerers for the MEBT	Resistive Magnets	13	
Scrapers for the MEBT	Mechanics	2	
Possible Future CIEMAT contribution to IFMIF (Full-Scale)			
Activities for Future Fusion Accelerators within the TAPIC Project	RF, Simulation, etc.	N/A	

# 

Ciemat

# **Resistive Magnets**

# **Resistive Magnet for LIPAc**





Type: Combined	Quadrupole	Dipole	
Integrated Field	0.068 ÷ 0.163 Tm 3.51 mTm		
Inner Diameter	56 ÷ 136 mm		
Op. Current	178 ÷ 313 A	50 A	
Technology	Water Cooled Radiation Resistant	Air Cooled Radiation Resistant	
Industrialization	YES, first 5 units already made by ANTEC		



#### Centro de Investigaciones

y Tecnológic

#### **CONTRIBUTION BY COMPONENTS**

# **Mechanics (2)**









Туре	4-Collimator Scraper
Displacement Range	21mm
Movement Precision	20 µm
Max Dissip .Power	4 x 500 W
Technology	Water-cooled, Step motor controlled in closed loop
Industrialization	YES: First Prototype at AVS finished. The Second one in fabrication





# **Radiofrequency (2)**





Туре	IH Resonator, 4 Acceleration gaps	
Frequency	175 MHz	
Peak Electric Field	24 kV	
Max Dissip. Power	≤100 kW	
Technology	Resistive, Water-cooled,	
Industrialization	YES: First Prototype already done at DMP	



RADIOFREQUENCY

Cierro de Investigaciones Energéticas, Medicambientales

y Tecnológicas

DE ECONOMIA Y COMPETITIVIDAD

# **Integration Activities**

#### Medium Energy Beam Transport Line (MEBT):

- □ Compact transport line between RFQ and cryomodules
- □ Main components: Five combined magnets, two buncher activities, beam scrapers and beam diagnostics.
- □ Fully designed by CIEMAT; manufactured by Spanish industry

MEBT ready to be sent to Rokkasho: end of January 2016

Buncher cavity

ZScrapers





#### Other ongoing activities:

Ciemat

- □ Solenoids for high energy accelerating part of LIPAC
- □ High Energy beam line: magnets, beam diagnostics, beam dynamics
- DONES accelerator: beam dynamics studies since October 2015



Combined magnets



Beam position monitors



ro de Investigaciones icias. Medicambientales XIII Meeting of the Spanish

# **The AMIT Project**



Cierro de Investigaciones Energiticas, Medicambientales y Tecnalógicas

MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD

# **The AMIT Project**



In 2010 the Project AMIT (Advanced Molecular Image Technologies) started. One of the Work Package assigned to CIEMAT consists of the development of a Compact Superconducting 8,5 MeV Cyclotron for ¹¹C and ¹⁸F production. It includes the development and fabrication of the targets and the installation of the facility.

Present CIEMAT contribution to AMIT					
COMPONENT	ТҮРЕ	QUANTITY			
Complete Superconducting Cyclotron Prototype	Accelerator	1			
Possible Future CIEMAT contribution to AMIT & Other Accelerators for Isotope Production					
Participation in Cyclotron Industrialization & Commercialization	Industrial Alliance	TBD			
Participation with CERN in the development of a LINAC	Targets & RF	TBD			



Cierro de Investigaciones

# **Superconducting Magnet for AMIT**









Туре:	2 Solenoid in Hemholtz Coils Config.		
Central Field	4.0 T		
Overall Diameter	700 mm		
Op. Current	110 A		
Technology	NbTi Wet Impregnation 2 phase helium cooling		
Industrialization	YES: Prototype made at Industry under CIEMAT supervision		





### **Cryogenic Supply System for AMIT**





Туре:	Cryogenic Refrigerator for the AMIT Magnet		
Max. Extracted Power	1,0 W		
Refrigeration	Two-Phase Helium @ 4,3K Gas Helium @ 40-70 K		
Technology	He recirculation in close circuit and re- condensation with a cryocooler		
Industrialization	YES One prototype built @ CERN as contribution to the AMIT Project and a second prototype under construction at Industry		



Centro de Investigaciones Energéticas, Medicambientales y Tecnolótricas

COMPETITIVIDAD

# **Experimental validation of AMIT cyclotron ion source**

#### **Goals:**

□ To analyze the ion source behavior and improve the design

Beam characterization and validation of beam dynamics calculations

- □ To reduce AMIT commissioning time (some other cyclotron components can also be tested at IST facility)
- □ Future: to provide a future ion source test facility open to external collaborations



 $\rightarrow$ 

Electrical shield box, beam probes, puller and ion source



- The ion source is at ground whereas the puller, at positive DC high voltage, will extract the particles.
- An electrical shield box is installed inside the vacuum chamber. A beam probe, located according to H⁻ trajectory, will measure the H⁻ current

Beam emittance will be measured with an interceptive method based on slits and wire monitors.

#### Measurements are on going



STERUO CONOMÍA DIPETITIVIDAD

# Summary of Technology Transfer & Conclusions



Cierrote Centro de Investigaciones Energiticas, Medicambientales V Tecnológicas

COMPETITIVIDA

#### Summary of Industrial Participation

COMPANY	SUPPLY	ТҮРЕ	QUANTITY
ALDERAN	Intersection Control Rack for E-XFEL	Electronics & Instrum.	1 (prot.)
ANTEC	Combined Magnets for E-XFEL (magnet)	SC Magnet	103 SERIES
ANTEC	Magnet for AMIT (magnet)	SC Magnet	1 (prot.)
ANTEC	Quadrupole for IFMIF	Resistive Magnet	1 (prot.)
АРМ	Moving Tables for E-XFEL	Mechanics	1 (prot.)
AVS	Scrapers for IFMIF	Mechanics	1 (prot.)
CRYOVAC	Cryostat for E-XFEL Magnet Prototype	Mechanics	1 (prot.)
DMP-HTS	Moving Tables for E-XFEL	Mechanics	49 SERIES
DMP-HTS	Buncher for IFMIF	Radiofrequency	1 (prot.)
DMP-HTS	Phase Sifter for E-XFEL	Special Magnet	1 (prot.)
DMP-HTS	PETS for CLIC/CTF3	Radiofrequency	1 (prot.)
ELYTT	Combined Magnet for E-XFEL	SC Magnet	1 (prot.)
INABENSA	Intersection Control Rack for E-XFEL	Electronics & Instrum.	2 (prot.)
INDEX	Moving Tables for E-XFEL	Mechanics	1 (prot.)
NOVALTI	Moving Tables for E-XFEL	Mechanics	1 (prot.)
PINE	Intersection Control Rack for E-XFEL	Electronics & Instrum.	1 (prot.)
RAMEM	Moving Tables for E-XFEL	Mechanics	49 SERIES
SINTERSA	Intersection Control Rack for E-XFEL	Electronics & Instrum.	1 (prot.)
Utillajes HUERTA	LINAC for Racetrack Microtron	Radiofrequency	1 (prot.)
Utillajes HUERTA	Moving Tables for E-XFEL	Mechanics	1 (prot.)
Utillajes Huerta	PETS for CLIC/CTF3	Radiofrequency	1 (prot.)
TRINOS V. P.	Combined Magnets for E-XFEL (vessel)	SC Magnet	103 SERIES
TRINOS V. P.	Magnet for AMIT (vessel)	SC Magnet	1 (prot.)
TRINOS V. P.	Extraction Kickers for CTF3 (CLIC)	Special Magnet	1 (prot.)
TRINOS V. P.	Tail Clipper Kicker for CTF3 (CLIC)	Special Magnet	1 (prot.)
TRINOS V. P.	PETS for CLIC/CTF3	Radiofrequency	1 (prot.)
TRINOS V. P.	Beam Position Monitors for LIPAc	Mechanics	4

Cierro de Investigaciones Energéticas, Medicambientales y Tecnológicas

MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD

GOBIERNO DE ESPAÑO

# Conclusions

**1.-CIEMAT** Department of Technology has developed a significant technological activity in the field of particle accelerators for more than 25 years.

2.-These activities started for the LHC project, mainly focused on superconducting magnets with a clear and fruitful participation of the Spanish Industry.

3.-From 2010 to present days, CIEMAT has undertaken the technical activities of the Spanish contribution to the European XFEL, being in charge of delivering Superconducting Combined Magnets, Quadrupole Moving Tables and Intersection Control Racks in close cooperation with Industry.

4.-This contribution has been complemented with Power Supplies for the Superconducting Combined Magnets, lead by the Polytechnic University of Madrid (Centre for Industrial Electronics).

5.-CIEMAT is also participating in most of the CERN projects for future accelerators like CLIC, LHC Hi Luminosity or the Future Circular Collider

6.-There is also a significant and increasing activity at CIEMAT in the field of small and advanced accelerators.



#### Ciemat

# Thank you very much for your attention

# luis.garcia@ciemat.es



Cierrot Centro de Investigaciones Energicicas, Madicambientales V Tecnológicas