

### CLIC detector & physics Status and Plans

Marcel Vos, IFIC (UVEG/CSIC) Valencia, for the CLIC detector & physics collaboration

CLIC Workshop, CERN, january 2016





Compact Linear Collider

## Physics programme

CLIC has a "guaranteed programme" based on known particles and processes: a precise knowledge of couplings and properties of Z, W, H, t provides indirect sensitivity to BSM physics at very high scale



## Physics programme



R&D for future colliders must be ready for the unexpected: enable direct production of new particles with mass up to  $\sqrt{s/2}$ 

## A tentative programme

The CLIC programme envisages a start at relatively low energy (380 GeV), and quickly ramps up to ultimate lepton collider reach (1.5 TeV, 3 TeV)

Expected soon: staging document, see talk by Eva Sicking on Friday



Note: benchmark studies were performed at 350 GeV and 1.4 TeV

## **Higgs physics**



CLIC programme provides access to different Higgs boson production mechanisms:

- Higgstrahlung
- vector-boson fusion
- associated ttH production
- di-Higgs production

Expected soon: CLIC Higgs paper



# Higgs physics at 350 GeV



Analysis of Higgsstrahlung and vector-boson fusion events provides model-independent measurement of Higgs couplings

$$\begin{array}{c} Z \rightarrow \mu\mu \ \text{BR} \sim 3.5\% \\ Z \rightarrow ee \ \text{BR} \sim 3.5\% \\ Z \rightarrow qq \ \text{BR} \sim 70\% \end{array} \xrightarrow{} \begin{array}{c} \Delta(\sigma_{\text{HZ}}) = \pm 4.2\% \\ \Delta(\sigma_{\text{HZ}}) = \pm 1.8\% \end{array}$$

New: hadronic recoil analysis M. Thomson, CLICdp-Pub-2015-004, arXiv:1509:02853

 $\Delta(g_{HZZ}) = \pm 0.8\%$ BR(H=>inv) < 1% Jet energy resolution prefers 350 GeV over 420 GeV

Jet clustering and tagging performance prefers 350 GeV over 250 GeV





6

# **Higgs physics**

High-energy programme (1.4 – 3 TeV) provides opens up ttH production and di-Higgs production



### ttH production: $e^+e^- \rightarrow ttH$

- Extraction of top Yukawa coupling
- Best at √s≥700 GeV

### **Projected precision:**

• **Δ(g<sub>Htt</sub>) = ±4.5%** at 1.4 TeV

## Double-Higgs production: $e^+e^- \rightarrow HHv_ev_e$

- Simultaneous extraction of triple Higgs coupling,  $\lambda,$  and quartic HHWW coupling
- Needs high  $\sqrt{s} \ge 1.4$  TeV

### **Projected precision:**

 $\Delta(\lambda) = \pm 10\%$  for 1.4 TeV and 3 TeV operation combined (incl. polarisation)

# CLIC's internal complementarity

CLIC improves on its own low-energy results for most couplings first stage provides crucial model-independent Z coupling measurement, and couplings to most fermions and bosons; higher-energy stages improve them, and add t,  $\mu$ , g couplings

NEW: result for Higgs paper includes hadronic recoil analysis

See talk by Ph. Roloff



Model-independent: width is free parameter Model-dependent: assuming SM decays parameterizing perturbations as K

# CLIC's internal complementarity

CLIC improves on its own low-energy results for most couplings first stage provides crucial model-independent Z coupling measurement, and couplings to most fermions and bosons; higher-energy stages improve them, and add t,  $\mu$ , g couplings

coupling relative to SM

NEW: result for Higgs paper includes hadronic recoil analysis

See talk by Ph. Roloff

much more accurate than HL-LHC
 similar accuracy as HL-LHC



Model-independent: width is free parameter Model-dependent: assuming SM decays parameterizing perturbations as K

# Top quark physics

### Top quark pair production

- ttZ coupling is a sensitive probe that may present sizeable deviations for BSM at 10-30 TeV



Uncertainty LHC, √s = 14 TeV, L = 3000 fb<sup>-1</sup> Phys.Rev.D71 (2005) 054013 Phys.Rev.D73 (2006) 034016 ILC, √s = 500 GeV, L = 500 fb<sup>-1</sup> EPJ C75 (2015) 512 CLIC, √s = 380 GeV, L = 500 fb<sup>-1</sup> PREI IMINARY CLIC,  $\sqrt{s}$  = 380 GeV, L = 500 fb<sup>-1</sup> ( $\sigma_{th.uncert.} \sim 3\%$ ) PRELIMINARY  $10^{-1}$ 10-2  $10^{-3}$  $F_{2V}^{\gamma}$  $F_{1V}^{\gamma}$  $F_{1V}^{Z}$  $F_{1A}^{Z}$  $F_{2V}^{Z}$ 

+top mass to 50 MeV,  $t \rightarrow cH$  to  $10^{-5}$ Coordinated effort towards a top paper See talk by I. Garcia

LC prospects are an order of magnitude better than LHC 500 GeV: larger boost and smaller theory uncertainty

## New physics?



ATLAS di-photon spectrum 2015 data 3.2/fb of 13 TeV pp collisions

fit to smooth background

# New physics: limits & p-values



Local p-value = probability observations are compatible with background-only hypothesis.... without Look-Elsewhere-Effect

Limit on producion rate of a narrow state... Clearly the limit around 750 GeV is quite poor



## New physics... in CMS?







# Discovery?

- Poor signficance in ATLAS (<4 $\sigma$  locally) and none in CMS (2 $\sigma$  locally)
- Look-Elsewhere-Effect reduces significance:
- $4\sigma \rightarrow 2\sigma, 2\sigma \rightarrow 1\sigma$

200 theory papers can't all be wrong :) Wait six months and we'll know

## New physics: be prepared for surprises

From the LHC, with love: a new scalar with m=750 GeV The new state – if it exists - couples to photons, presumably through loops So we might be seeing something like this:



## New physics: be prepared for surprises

CERN-PH-TH/2015-302

IFUP-TH/2015

#### What is the $\gamma\gamma$ resonance at 750 GeV?

Roberto Franceschini<sup>a</sup>, Gian F. Giudice<sup>a</sup>, Jernej F. Kamenik<sup>a,b,c</sup>, Matthew McCullough<sup>a</sup>, Alex Pomarol<sup>a,d</sup>, Riccardo Rattazzi<sup>e</sup>, Michele Redi<sup>f</sup>, Francesco Riva<sup>a</sup>, Alessandro Strumia<sup>a,g</sup>, Riccardo Torre<sup>e</sup>

<sup>a</sup> CERN, Theory Division, Geneva, Switzerland
 <sup>b</sup> Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
 <sup>c</sup> Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19,

Franceschini, Giudice et al., arXiv:1512.04933v1



## New physics: be prepared for surprises

From the LHC, with love: a new scalar with m=750 GeV The new state – if it exists - couples to photons, presumably through loops Then this other process should also have a sizeable rate:



## New physics: photons

- A 1 TeV e<sup>+</sup> e<sup>-</sup> collider + couple of lasers
- = 750 GeV photon collider

Production rate expected to be O(100) fb

F. Richard, private comm.

Ito, Moroi, Takaesu, arXiv:1601.01144

Djouadi el a., arXiv:1601.03696

 $\frac{u_{p_1}}{u_{p_2}} = \frac{u_{p_1}}{u_{p_2}} + \frac{u_{p_2}}{u_{p_2}} = \frac{u_{p_2}}{u_{p_2}} = \frac{u_{p_2}}{u_{p_2}} + \frac{u_{p_2}}{u_{p_2}} = \frac{u_{p_2}}{u_{p_2}}$ 

Ginzburg et al., NIM 205, NIM 219, JETP Lett. (early 80s) TESLA TDR, V. Telnov, JINST 9 (2014) 09 C0909

CLIC yy option: https://indico.cern.ch/contributionDisplay.py?contribId=145&confld=175067

### Photon fusion at high energy collider



Sizeable cross-sections possible if photon dominates the  $\Phi(750)$  width Requires rather high energy (2 TeV)

## New physics: more speculative

A new scalar with m=750 GeV can be many things:

 If the new state couples to W or Z, vector-boson fusion production of such a heavy state requires a high-energy e<sup>+</sup> e<sup>-</sup> machine

Cross section typically O(1) fb at 2 TeV

- If it is accompanied by, say, vector-like leptons

these can be pair-produced if  $\sqrt{s} > 2m$ 

### - If it talks to the Standard Model (Higgs and top)

sizeable deviations in precision measurements at "low" energy

| Illustration: Higgs couplings in several | Model           | $\kappa_V$       | $\kappa_b$      | $\kappa_{\gamma}$ |
|------------------------------------------|-----------------|------------------|-----------------|-------------------|
| scenarios (with $\Lambda = 1$ TeV)       | Singlet Mixing  | $\sim 6\%$       | $\sim 6\%$      | $\sim 6\%$        |
| Snowmass Higgs report (arXiv:1310.8361)  | 2HDM            | $\sim 1\%$       | $\sim 10\%$     | $\sim 1\%$        |
|                                          | Decoupling MSSM | $\sim -0.0013\%$ | $\sim 1.6\%$    | $\sim4\%$         |
| LCC physics WG is working out            | Composite       | $\sim -3\%$      | $\sim -(3-9)\%$ | $\sim -9\%$       |
| more specific cases                      | Top Partner     | $\sim -2\%$      | $\sim -2\%$     | $\sim +1\%$       |

## New physics: more speculative

A new scalar with m=750 GeV can be many things:

### Potentially very rich phenomenology, both at low (250-500 GeV) and high energy (1-3 TeV)

Djouadi, Ellis, Godbole, Quévillion, arXiv:1601.03696

"If the discovery is confirmed, it will shine a new light on options for possible future colliders, placing a premium on those with sufficient energy to produce the new particles, while also suggesting a new motivation for precision low-energy experiments."

See talks by F. Simon, M. Berggren for more conventional new physics prospects

## CLIC detector



## **CLIC** detector requirements



### **\***momentum resolution:

endpoints, Higgs recoil mass, Higgs  $\rightarrow \mu\mu$ 

$$\sigma_{p_T}/p_T^2 \sim 2 \times 10^{-5} \,\mathrm{GeV^{-1}}$$

### **\***jet energy resolution:

W/Z/h di-jet mass separation

 $\frac{\sigma_E}{E} \sim 3.5 - 5 \%$  (for high-E jets)

### **\***impact parameter resolution:

c/b-tagging, Higgs BR

$$\sigma_{r\phi} = 5 \oplus 15/(p[\text{GeV}]\sin^{\frac{3}{2}}\theta)\mu\text{m}$$



+ time stamping for  $\gamma\gamma \rightarrow$  hadrons and pair production

CLICdp overview, CERN, january 2016

**\*Forward coverage!!** 

## **CLIC** Detector Concept

# Adapt the ILC concepts to a single CLIC detector

- 4 Tesla solenoid
- highly granular and deep calorimeter (1+8 $\Lambda$ )
- low-mass silicon tracking system
- precision vertexing (starting at R=3 cm)
- precise 10 ns time stamping
- QD0 outside detector (forward coverage)

### For overview:

CLIC CDR, arXiv:1202.5940

### For up-to-date details:

Marko Petric, Friday plenary session



# New Detector Design

Position of final quadrupole QD0 represents a trade-off

- QD0 inside detector  $\rightarrow$  maximal luminosity
- QD0 outside detector → forward coverage (important at high energy!)

### new CLIC detector model:

R (HCAL) decreased, 500  $\rightarrow$  250 mm

 $L^* = 6 m$ , minor loss of luminosity





See talk by Marko Petric

## New tracker layout



### All-silicon tracker, divided in an inner and outer system

- 3 short + 3 long barrel layers
- 7 inner + 4 outer endcaps

At least 8 hits (Vertex + Tracker) for >  $8^{\circ}$ 

## **CLIC** Detectors: calorimetry



FCAL

### Ultra-granular calorimeters: from science fiction to science

The **CLICdp group contributes to the CALICE and FCAL** R&D collaborations, which have constructed and tested ultra-granular SiW EM calorimeters, a 1 m<sup>3</sup> prototype ScW hadronic calorimeter and forward calorimeter prototypes

# CLIC detectors: calorimetry



## Vertex detector/tracker

Hybrid pixels & active R&D on CMOS, active, 3D integrated, SOI,... (precise & fast within a challenging material budget)



capacitive signal connection to CMOS detector

Can we build a demonstrator that meets all challenging specifications -10 ns time stamping, 3.5  $\mu$ m resolution, low power, 0.2% X<sub>0</sub>/layer?

CLICdp overview, CERN, january 2016

presentation by M. Campbell in this session See also: review by N. Wermes

## **Reconstruction software**

- Track reconstruction in dense jets
  - Adopt solutions from LHC
- Particle flow "under pressure"
  - Confusion limits high-energy resolution
- Jet reconstruction with background
  - New algorithms

overlap with LHC experiments

FCC-hh is forced to find solutions

## Track reconstruction

Continuous improvement of **Linear Collider software** for simulation/reconstruction Strong common ILD/CLICdp effort. Emphasis: **DD4hep** and **track reconstruction** 



# **PFA/jet reconstruction**

Pandora Particle Flow *EPJC75 (2015) 9, 439* 

- Energy resolution:  $\Delta E/E \sim 3\%$
- Powerful jet substructure analysis



- Excellent jet reconstruction performance in 50-250 GeV range
- Confusion degrades energy resolution at TeV scale
- Clustering limits performance of 4, 6 and 8-jet final states (vvHH, ttH)

# Summary

- CLIC's low-energy stage provides very competitive precision Higgs and top physics, probing new physics at very high scales
- CLIC opens up the possibility of  $e^+e^-$  collisions with  $\sqrt{s} >> 1$  TeV, giving access to ttH and HH production and extending the direct discovery reach
- In the next years the CLIC detector and physics collaboration will:
  - finalize a realistic detector model (~2016)
  - pursue detector R&D for the most challenging components (calorimetry, vertexing)
  - complete physics case studies on Higgs, top and BSM physics (~2017)
     providing inputs for the next European Strategy discussion (2019/20)
     See: Lucie Linssen's talk on Friday

## CLICdp plans up to next European Strategy

### **CLICdp reports serving as ingredients for a summary report:**

- 2015 CLIC re-baselining report
  - In preparation, together with accelerator. Draft by end-2015. Publication tbc.
- The 2015 CLIC detector model †
  - Nearly complete draft exists. Technical note.
- The CLIC Higgs physics overview publication of 2015
  - Nearly finished. End-2015. Publication
- An overview of CLIC top physics
  - Foreseen CLIC top physics publication in 2016/2017?
- Extended BSM studies (hopefully motivated by LHC discoveries)
  - Foresee publication in 2017?
- CLIC R&D report => with main CLIC technology demonstrators
  - Summary report, 2017, Note or Publication tbc.
- Plan for the period ~2019-2025 in case CLIC would be supported by next strategy
  - 2017/2018, Note to be included in the CLIC input report for the Strategy

## choice of lower CLIC energy stage (1)





### CLIC jet reconstruction



High-energy performance dominated by confusion in PFA pattern recognition

Improvements in software may change (and indeed have changed) the overall picture in a qualitative fashion!



Reap the rewards of this approach with detector optimisation studies...

Jet energy resolution (with intrinsic energy resolution and confusion terms) as a function of jet energy, for  $45 \text{ GeV} \le E_j \le 1.5 \text{ TeV}$ 

# Impact of background on jets

 $e^+e^- \rightarrow W^+W^- \rightarrow lv q\bar{q}$  events at CLIC at 3 TeV with W energies of 100, 250, 500 and 1000 GeV Overlay 60 (120) BX worth of  $\gamma\gamma \rightarrow$  hadrons, select in-time reconstructed particles, remove lepton Reconstruct long. inv.  $k_{,j}$  jets exclusively (N=2, R=0.7)



Energy resolution at high energy is not too badly affected, but can deteriorate strongly at low energy. Mass resolution suffers.

[CLIC CDR, Marshall, Münnich & Thomson, arXiv:1209.4039], See also: M. Boronat et al., PLB750 (2015) 95-99

## Pandora ILC/CLIC synergies





## Higgsstrahlung $e+e- \rightarrow HZ \otimes 350 \text{ GeV}$





## Vertex engineering



### micro-channel cooling





Micro-channel pattern in handle wafer Standard etching procedure



ek tube

### air cooling simulations/tests





### thin supports



# 3D-printed adaptor



# Photon Collider

- Idea goes back to Novosibirsk in the early 1980s
- Extensively studied in TESLA TDR and still part of the ILC TDR design considerations. See V. Telnov, JINST9 (2014) C09029



High-energy, high-lumi electron beam transfers its energy to photons from a laser through Compton back-scattering

Resulting photon beam has  $E_{\gamma} \sim 0.8 E_{b}$  and a luminosity that's not too different from the parent  $e^+e^-$  collider

# Higgs couplings - comparisons





|                                |                                                                                                                                                      |                                               | Statistical precision |                       |                         |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------|-----------------------|-------------------------|
| Channel                        | Measurement                                                                                                                                          | Observable                                    | 350 GeV               | 1.4 TeV               | 3.0 TeV                 |
|                                |                                                                                                                                                      |                                               | $500~{ m fb}^{-1}$    | $1.5 \text{ ab}^{-1}$ | $2.0 \mathrm{~ab}^{-1}$ |
| ZH                             | Recoil mass distribution                                                                                                                             | m <sub>H</sub>                                | 120 MeV               | _                     | _                       |
| ZH                             | $\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{invisible})$                                                                                   | $\Gamma_{ m inv}$                             | 0.6%                  | _                     | _                       |
| ZH                             | $H \rightarrow b\overline{b}$ mass distribution                                                                                                      | $m_{ m H}$                                    | tbd                   | —                     | —                       |
| $Hv_e\overline{v}_e$           | $H \rightarrow b\overline{b}$ mass distribution                                                                                                      | $m_{ m H}$                                    | —                     | $40 \text{ MeV}^*$    | 33 MeV*                 |
| ZH                             | $\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{Z} \to \ell^+ \ell^-)$                                                                               | $g_{\rm HZZ}^2$                               | 4.2%                  | _                     | _                       |
| ZH                             | $\sigma(\mathrm{HZ}) \times BR(\mathrm{Z} \to \mathrm{q}\overline{\mathrm{q}})$                                                                      | $g^2_{\rm HZZ}$                               | 1.8%                  | —                     | —                       |
| ZH                             | $\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$                                                                      | $g^2_{ m HZZ} g^2_{ m Hbb}/\Gamma_{ m H}$     | 0.85%                 | —                     | —                       |
| ZH                             | $\sigma(\mathrm{H}+\mathrm{X}) \times \mathit{BR}(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$                                                   |                                               | 10.7%                 | —                     | —                       |
| ZH                             | $\sigma(H+X) \times BR(H \rightarrow gg)$                                                                                                            |                                               | 4.1%                  | _                     | _                       |
| ZH                             | $\sigma(\mathrm{HZ}) 	imes \mathit{BR}(\mathrm{H}  ightarrow 	au^+ 	au^-)$                                                                           | $g^2_{ m HZZ} g^2_{ m H	au	au}/\Gamma_{ m H}$ | 6.2%                  | —                     | —                       |
| ZH                             | $\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{WW}^*)$                                                                                        | $g_{ m HZZ}^2 g_{ m HWW}^2 / \Gamma_{ m H}$   | 5.1%                  | _                     | _                       |
| ZH                             | $\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{ZZ}^*)$                                                                                        | $g^2_{ m HZZ} g^2_{ m HZZ} / \Gamma_{ m H}$   | tbd                   | _                     | _                       |
| $H\nu_e\overline{\nu}_e$       | $\sigma(Hv_e\overline{v}_e) \times BR(H \to b\overline{b})$                                                                                          | $g^2_{ m HWW}g^2_{ m Hbb}/\Gamma_{ m H}$      | 1.8%                  | 0.4%                  | 0.3%                    |
| $Hv_e\overline{v}_e$           | $\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$                       | $g^2_{ m HWW}g^2_{ m Hcc}/\Gamma_{ m H}$      | —                     | 6.1%                  | 6.9%                    |
| $Hv_e\overline{v}_e$           | $\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{gg})$                                           |                                               | _                     | 5.0%                  | 4.3%                    |
| $H\nu_e\overline{\nu}_e$       | $\sigma(\mathrm{H} \mathrm{v}_{\mathrm{e}} \overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H}  ightarrow \mathrm{\tau}^{+} \mathrm{\tau}^{-})$ | $g^2_{ m HWW} g^2_{ m H	au	au}/\Gamma_{ m H}$ | _                     | 4.2%                  | 4.4%                    |
| $Hv_e\overline{v}_e$           | $\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mu^{+}\mu^{-})$                                        | $g^2_{ m HWW}g^2_{ m H\mu\mu}/\Gamma_{ m H}$  | _                     | 38%                   | 25%                     |
| $Hv_e\overline{v}_e$           | $\sigma(\mathrm{Hv_e}\overline{\mathrm{v}_\mathrm{e}})	imes \mathit{BR}(\mathrm{H} ightarrow \mathrm{gg})$                                           |                                               | _                     | 15%                   | $10\%^\dagger$          |
| $Hv_e\overline{v}_e$           | $\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{Z}\gamma)$                                      |                                               | _                     | 42%                   | $30\%^\dagger$          |
| $Hv_e\overline{v}_e$           | $\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{WW}^{*})$                                       | $g_{ m HWW}^4/\Gamma_{ m H}$                  | tbd                   | 1.0%                  | $0.7\%^\dagger$         |
| $Hv_e\overline{v}_e$           | $\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{ZZ}^{*})$                                       | $g_{ m HWW}^2 g_{ m HZZ}^2 / \Gamma_{ m H}$   | _                     | 5.6%                  | $3.9\%^\dagger$         |
| He <sup>+</sup> e <sup>-</sup> | $\sigma(\mathrm{He}^+\mathrm{e}^-) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$                                                        | $g^2_{ m HZZ} g^2_{ m Hbb}/\Gamma_{ m H}$     | —                     | 1.8%                  | $2.3\%^\dagger$         |
| tīH                            | $\sigma(t\bar{t}H) \times BR(H \to b\bar{b})$                                                                                                        | $g_{ m Htt}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$   | _                     | 8%                    | tbd                     |
| $HH\nu_e\overline{\nu}_e$      | $\sigma(\mathrm{HHv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}})$                                                                                | $g_{\rm HHWW}$                                | —                     | 7%                    | 3%                      |
| $HH\nu_e\overline{\nu}_e$      | $\sigma(\mathrm{HHv_e}\overline{\mathrm{v}_e})$                                                                                                      | λ                                             | —                     | 32%                   | 16%                     |
| $HH\nu_e\overline{\nu}_e$      | with $-80\% e^-$ polarization                                                                                                                        | λ                                             | _                     | 24%                   | 12%                     |

CLIC Higgs coupling measurements Overview for Higgs paper as per 18-01-2016