Update of MMC studies for silicon-based sensors

L. Andricek¹, I. Garcia², P. Gomis², C. Lacasta², C. Marinas³, M. Perelló², M.A. Villarejo², M. Vos²

¹ MPG Semiconductor Lab ² IFIC- Valencia ³ University of Bonn

Outline

- Introduction of the setup
- Past results
- Present design and very next steps
- Future designs
- Conclusions

Introduction

Micro-channle cooling: existing examples

M. Bomben - Microchannel cooling - LPNHE, 19/3/2015

13

The DEPFET Ladder

M.A. Villarejo Bermúdez 5

MCC prototype

Inlet and outlet: ~350 x 350 μm

Silicon dummies concept

The resistive dummies with integrated micro-channels

- Si modules with the designed dimensions of the detectors
- Homogeneous thickness (thinned sensor area not needed)
- Modules do not include the real electronics
- Aluminum layer with resistor meanders on thin top wafer -> simulate the power distribution

Half-Ladder for the inner vertex detector

14

Past results

3D-printer technology

Built by 3D-printer (stereolithography technology):

- -15 μm precision
- -300 µm per layer
- -Very complex geometries
- -Material: X0=350mm
- -Joint: 3D Part glued to MC silicon module
- Cheap and fast manufacture (not the 3D printer)
- Good performance below 70°C

3D-printed adaptor

Experiment conditions

- For all-Silicon resistive dummies operating above 0°C mono-phase fluid is chosen (H₂O)
- Possibility of use CO₂ at high pressure but not necessary at the power densities we have to manage
- Controlled environment to quantify cooling performance. Room temperature stable at 25°C
- Operated non-stop for a week with **no leaks**, **no clogging**

Thermal measurements: MCC

• flow \pm 0,03 l/h

Good agreement with the FE simulation

inside an error area of **10%**

Thermal measurements: Maximum Power vs Volumetric flow

Maximum power supported for a ΔT of 10 °C as a function of the volumetric flow

- Temperature stable even with power density of 25 W/cm²
- **Power vs vol. flow** at max. pump power (~ 3 l/h)
- Low pressure needed: 0.2 1.5 bar

Thermal measurements: MCC+air

Cooling strategy: micro-channels running under the front end and gentle air flow on the sensor part

- There is not big difference between MCC and MCC+air at the DCD hottest point
- Farthest regions to the air inlet are less affected
- Even with low volumetric water flow, high cooling
- 93% of total heat removed by MCC

Thermal measurements: MCC + air

Cooling strategy: micro-channels running under the front end and gentle air flow on the sensor part

- Big difference between MCC and MCC+air at the sensor area hottest point
- Nearest regions to air input are efficiently cooled even with low air flow
- MCC has less impact in away points as expected and great cooling locally

Vibrations and deformations

Clamped-free (CF) configuration: One extreme of the dummy is clamped to the 3D adaptor while the other is free of movement

Vibrations and deformations

No fluid circulation and no air flowing

Fluid circulation 1,47 l/h 10

Time [s]

Air flowing 3 m/s

Peak to peak of the signal ~0,7 μm RMS ~0,3 μm

Peak to peak of the signal ~0,1 μm RMS ~0,4 μm Peak to peak of the signal ~130 μm RMS ~57 μm

MCC has no significant impact on mechanical stability in the clamped-free configuration but air deformations are more than 100 μ m if v=3m/s (could be reduced a factor 10 for velocities under ≤ 0.5 m/s)

Amplitude vs Vair

- Peak-to-peak amplitude is the change between peak (highest amplitude value) and trough (lowest amplitude value)
- RMS \simeq (PeaktoPeak/2) * 0.707 (approximation)
- For v= 2.5 m/s the amplitude of vibration is:
 - ~19 µm for clamped-free configuration
 - ~2.8 µm for clamped-clamped configuration

Vibrations and deformations

- Minor deformations observed in transitions regions
- Mechanical stability after cycles
- Maximum deformation $\sim 20 \ \mu m$

Amplitude vs Vair

- Peak-to-peak amplitude is the change between peak (highest amplitude value) and trough (lowest amplitude value)
- RMS \simeq (PeaktoPeak/2) * 0.707 (approximation)
- For **v= 2.5 m/s** the amplitude of vibration is:
 - ~19 µm for clamped-free configuration
 - ~2.8 µm for clamped-clamped configuration

Past results: design issues

XIIth Meeting of the Spanish Network for Future Linear Colliders

M.A. Villarejo Bermúdez 33

Present design and very next steps

3D-printed adaptor CURRENT design

3D-printed adaptor CURRENT design: Characteristics

3D-printed adaptor CURRENT design: Glue issue

Glue: Araldite2020

Expected max. pressure: 150bar Possible problem: Clog of MC

XIIth Meeting of the Spanish Network for Future Linear Colliders

M.A. Villarejo Bermúdez 37

Future designs

Optimized MCC geometry

- More homogenous flow lacksquare
- Reduce pressure gradients •
- Minimize and confine the heat spread

Recent geometry

3D-printed adaptor FUTURE design

3D-Printing

To try different types of glue: 2020 2011 Epolite Possibility to include:
1) Bumpboundings (next slides)
2) Thermorresistors (next slides)
3) New MC layout (next slides)
4) Automatize gluing process

Thermal simulations: MCC

XIIth Meeting of the Spanish Network for Future Linear Colliders

M.A. Villarejo Bermúdez 41

Thermal measures: SMD pt1000 along the ladder

SOLDER PAD DIMENSIONS in millimeters

RECOMMENDED SOLDERPAD DIMENSIONS								
TYPE	WAVE SOLDERING				REFLOW SOLDERING			
	G	Y	X	Z	G	Y	X	Z
PTS 0603	0.55	1.1	1.1	2.75	0.65	0.7	0.95	2.05
PTS 0805	0.8	1.25	1.50	3.2	0.9	0.9	1.4	2.7
PTS 1206	1.4	1.5	1.9	4.4	1.5	1.15	1.75	3.8

DESCRIPTION

A homogeneous film of platinum is deposited on a high

on a high alcohols, esters and aqueous solutions. The suitability of

Thermal simulations: MCC Layouts

Conclusions

MCC shows very efficient cooling, up to 25 W/cm² with minimal temperature increase (10°C) even with a mono-phase fluid at low pressure

Thermal measurements are in good **agreement with the FE simulation**

MCC has a minimal impact on the mechanical stability

The assembly with the 3D-printed adaptor was done **successfully in 3/3**

MCC embedded in all-silicon ladders is a real option

3D-printed adaptor resistant to high pressure -> 183 bar

Pressure test

Thermal measurements: cold water

