Status of the readout electronics for the Silicon micro-strip detector of the ILD concept

<u>O. Alonso,</u> A. Diéguez, M. López, A. Vilà, O. Ruiz and A. Herms

SIC, Departament d'Electrònica, Universitat de Barcelona, Spain

oalonso@el.ub.es

Outline

- Starting point
- Front-end ASIC
 - Noise analysis
 - CSA
 - CSA + Shaper
 - ASIC
- Test plan
- Conclusions

Starting point

KPiX ASIC: generic R&D toward system-on-chip designs

- 32×32 array = 1024 channels
- Designed to be
 - bump-bonded to a Si sensor, or
 - bumped to a hybrid for large area detectors (RPC's, GEM's, etc)

- For each channel of the system-on-chip
 - » 4 samples per train with individual timestamps
 - » auto-triggering
 - » internal per-channel 13-bit ADC
 - » automatic range switching for large charge depositions (10pC)
 - » bias current servo for DC coupled sensors
 - » power cycling: power down during inter-train gaps (20 uW avg for ILC time structure)
 - » built-in calibration
 - » nearest neighbor trigger ability
 - » high-gain feedback capacitor for tracker application
 - » dual polarity for GEM and RPC applications
 - » external trigger for test beam
- Digital IP core with serial data IO (only 4 signals)
- 0.25µm TSMC

Collaboration: SLAC, UCSC, U. of Oregon, UC Davis KPiX, An Array of Self Triggered Charge Sensitive Cells Generating Digital Time and Amplitude Information", D. Freytag. G. Haller, et al. SLAC-PUB-13462, 2008. 4pp (IEEE NSS Oct 2008) KPiX, an 1,024 cell ASIC, Design and Performance, accepted for presentation at NSS 2012

Block diagram of a single channel

1024-channel KPiX

Front-end ASIC

U

Front-end ASIC: Noise analysis (1)

$$ENC \approx (C_d + C_f + C_i) \cdot \sqrt{\frac{2}{3}kT \frac{1}{g_m} 1.57 \frac{e^2}{\pi q_e^2 \tau} + \frac{k_f}{C_{ox}^2 \cdot WL} \frac{e^2}{2q_e^2}}$$

net@ net@10 and tabulated. sqrt(ld) deriv(sqrt(ld)) nch 400-100.0netØ3 'nch' 300--100.0--200.0-200-ස ⊎-300.0-ද I (E-3) n:Preset 100--400.0--500.0--600.0--700.0--100-.5 .75 1.0 1.25 .25 .25 0.0 0

EKV model

 $Kp = 30.65 \text{ uA/V}^2$ $Kn = 141.10 \text{ uA/V}^2$ Values of I_{s}^{*} and λ_{e} are

 $IF = \frac{I_{ds} \cdot L}{I_s^* \cdot W}$ $\lambda_E = \lambda \cdot L = \frac{I_{ds} \cdot L}{\tilde{a}}$ q_{ds} $k_n = 2m^2 \cdot \frac{L}{W}$ $I_s^* = \left(-2 \cdot U_t \cdot \frac{d\sqrt{I_d}}{dV_c}\right)^2 \cdot \frac{L}{W}$

Department of Electronics

Universitat de Barcelona

 $g_m = \frac{I_{ds}}{2nU_t} \cdot \frac{1 - e^{-\sqrt{IF}}}{\sqrt{IF}}$

$$n = \frac{I_s^*}{2 \cdot k_n \cdot U_t^2}$$

B

Oscar Alonso - Madrid, 25-26 Jan 2016

1.0 1.25

CSA: Input PMOS

Optimum width for a given L and Ids

L	I_{ds}	a	b	$ENC \ 20 pF$	W_{optima}	Consum	IF
$0.20 \mu m$	$100\mu A$	$134e^{-}$	$32.8e^{-}$	$791e^{-}$	$2737 \mu m$	$120\mu W$	0.06
$0.20 \mu m$	$200\mu A$	$132e^-$	$24.8e^{-}$	$629e^{-}$	$3657 \mu m$	$240\mu W$	0.10
$0.20 \mu m$	$300\mu A$	$131e^-$	$21.3e^{-}$	$557e^-$	$4307 \mu m$	$360\mu W$	0.12
$0.20 \mu m$	$500 \mu A$	$131e^-$	$17.8e^{-}$	$486e^{-}$	$5248 \mu m$	$600\mu W$	0.17
$0.50 \mu m$	$100\mu A$	$155e^-$	$35.0e^{-}$	$855e^-$	$1199 \mu m$	$120\mu W$	0.45
$0.50 \mu m$	$200\mu A$	$150e^-$	$26.7e^-$	$685e^-$	$1558 \mu m$	$240\mu W$	0.69
$0.50 \mu m$	$300 \mu A$	$148e^{-}$	$23.1e^{-}$	$609e^{-}$	$1806 \mu m$	$360 \mu W$	0.90
$0.50 \mu m$	$500 \mu A$	$147e^-$	$19.4e^{-}$	$534e^-$	$2158 \mu m$	$600 \mu W$	1.25
$0.75 \mu m$	$100\mu A$	$174e^{-}$	$36.7e^{-}$	$908e^{-}$	$860 \mu m$	$120\mu W$	0.96
$0.75 \mu m$	$200\mu A$	$167e^-$	$28.3e^{-}$	$732e^-$	$1097 \mu m$	$240\mu W$	1.51
$0.75 \mu m$	$300 \mu A$	$164e^-$	$24.5e^-$	$653e^{-}$	$1258 \mu m$	$360\mu W$	1.98
$0.75 \mu m$	$500 \mu A$	$161e^-$	$20.7e^{-}$	$574e^-$	$1482 \mu m$	$600\mu W$	2.80
$1.00 \mu m$	$100\mu A$	$193e^{-}$	$38.4e^{-}$	$960e^{-}$	$690 \mu m$	$120\mu W$	1.61
$1.00 \mu m$	$200\mu A$	$184e^-$	$29.8e^-$	$779e^-$	$867 \mu m$	$240\mu W$	2.56
$1.00 \mu m$	$300 \mu A$	$180e^{-}$	$25.9e^{-}$	$698e^{-}$	$984 \mu m$	$360 \mu W$	3.39
$1.00 \mu m$	$500\mu A$	$176e^-$	$22.0e^-$	$615e^-$	$1143 \mu m$	$600\mu W$	4.86

ENC ~ a + b·Cd

 $ENC = \sqrt{\frac{2}{3}kT\frac{1}{g_m}1.57\frac{C_t^2e^2}{\pi q^2\tau} + \frac{K_f}{C_{ox}^2WL}\frac{C_t^2e^2}{2q^2} + I_{leak}1.57\frac{e^2\tau}{2\pi q} + \frac{kT}{R}1.57\frac{e^2\tau}{\pi q^2}}$ Hans-Günther Moser, "Silicon detector systems in high energy physics", 2009

Front-end ASIC: CSA

Pre-Amp design in AMS 180 nm

- Power supply: 1.8 V
- Power consumption < 120 uW
- Scale: 40 MIP (1 MIP = 24000 e-)
- Amplifier:
 - Gain ~ 67,5 dB
 - GBW ~ 19,5 MHz
 - PM ~ 63º
- Main noise contribution of the circuit.
- Equivalent Noise Charge: ENC = a + bC_d (where C_d is the capacitor of the detector)
- Optimum L and Ibias to maintain the noise below 500 e-

Front-end ASIC: CSA differential

Pre-Amp design in AMS 180 nm

- Power supply: 1.8 V
- Power consumption: higher
- Scale: 100 MIP

Department of Electronics

B Universitat de Barcelona

- Amplifier:
 - Gain ~ 69 dB
 - GBW ~ 79,5 MHz
 - PM ~ 68º

Front-end ASIC: CSA

Pre-Amp design in AMS 180 nm

- Programmable gain to reduce noise.
- Scale: 40 MIP (1 MIP = 24000 e-)
 - Gain 1: from 1 to 10 MIPs -
 - Gain 2: from 10 up to 40 MIPs -
- Layout: 220 um x 25 um

Front-end ASIC: CSA + Shaper

- No programmable shaping time
- 1 us shaping time
- Image: Department of Electronics

 Image

Front-end ASIC: CSA + Shaper

- 228 um x 112 um
- U
 Department of Electronics

 B
 Universitat de Barcelona

Front-end ASIC: Modules sent to fab

- 1 BIAS module
- 1 CSA
- 1 CSA + Shaper (channel)
- For test purposes:
 - 1 CSA + Charge Injection
 - 1 Channel + Charge Injection
- Size: 867 um x 960 um

Oscar Alonso – Madrid, 25-26 Jan 2016

Test plan: Calibration

- $Q_{cal} = C_{cal} * (V_{pos} V_{cal})$
- C_{cal}: 38.6 fF
 - 38.6 * 2 fF
 - 38.6 * 3 fF
- V_{cal} = [1.8 V to 0 V]
- -Qcal = [0 fC to 208.44 fC]
- 1 MIP ~ 24000 e => 3.86 fC

E. Beuville et al., "High Performance, Low-Noise, 128-Channel Readout Integrated Circuit for Flat Panel X-ray Detector Systems"

Test plan

- Test BIAS system
- Test of CSA + Charge Injection:
 - Test correct behavior of CSA
 - Find ENC at low gain
 - Find ENC at high gain
 - Dispersion from chip to chip
- Test of Channel + Charge Injection
 - Test correct behavior of the channel
 - Find ENC at the output of the shaper
 - Is shaping time correct ?
 - Dispersion from chip to chip
- Test with real sensors.

Conclusions

- CSA can work with "source" or "sink" sensors.
- Similar noise but less power consumption than the work performed with TSMC 65 nm.
- For each switch noise increases, ENC with full gain near to 950 e.
- Study and design of a fast comparator. Has to be tested together with the resistive microstrip model.
- Need to adapt to DC sensors

