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The Blume-Capel-Haldane-Ising (BCHI) model

We study the 1-d model
N
H = Z a(s + bsz IZ+17
with trivial eigenstates |{s;}), where s; € {—s,—s+1,...,s}.

e Thecase a=0and s = % is the Ising model.
e The case s =1 is the Blume-Capel model.

e |t is the anisotropy part of the model studied by Haldane :

N
Hitatdane = [ > Si - Si1 + u(S7)* + ASFS7.

i=1



Haldane's model

N

Hitatdane = [J| D> Si - Si1 + u(S7)* + ASFS7,
i=1

e Haldane studied the model for large spin with small
anisotropy, and 0 < p < A.

e He observed that the Z; symmetry is broken by the two
classical ground-states (Néel ordered).

e He mapped the model to an integrable non-linear sigma
model.

e He obtained the soliton interpolating between the degenerate
ground-states.

e He conjectured that integer spins have a mass gap, whereas
half-odd spins have a gapless spectrum.



Ground state and solitons in BCHI

For the much simpler model

N
H = a(SP) + bSESi

i=1

it is of relevance to find the ground state and the soliton
(whenever Z, is spontaneously broken) for all values of a and b.

Our expressions will be :

e Semiclassical. s; € [—s, s]; the quantum states will be the
closest states with integer or half-odd s;;

e Exact. No need to assume a slowly varying field.



Ground state for S5, ; = S{, N even

This is the simplest case : no topological defect. One finds by
induction or direct inspection :

FIGURE : Ground state for N even and arbitrary spin s
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BCHI soliton

FIGURE : Soliton interpolating between doubly degenerate ground states
(when applicable)
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The non-trivial case is when 0 < a < |b|.



Antiferromagnetic soliton when 0 < a < b

e Set sp = s and sp+1 = (—1)"s, connecting the two Néel
ground states, n > 1.

e The energy of the generic state |sp, ..., Spt1) is

1
E= ESTBHS +2as® + bs't,

s=(s1,5,...,5,)" and t = (5,0,...,0,(—1)"s)".

e The critical points are given by
B,s = —bt.

e B, is the Hessian matrix of E.

e If B, is positive definite, hence invertible, the (unique) critical
point s = —b(B,) 1t minimizes E .



Eigenvalues of B,

B, is tridiagonal Toeplitz :

2a b
b 2a b
b 2a b

Its eigenvalues are known :

Aj=2(a+ beos %),

The Hessian is positive definite for cos

b 2a b

b 2a
j=12,...

™ a
<3

n+1

nxn

, n.



The critical point

e The point s = —b(B,) "'t solves the boundary problem
so =5, Sp+1 = (—1)"s if cos 15 < 2.
e Explicitely

on def  (-1Ys

J— H +1 H H—
%—Sj—msln(%—_j)e s J—l,...,n,

where cosf = a/b.
e 57 € [-s,s].
e For large n (i.e. a < b),

5 ~ (—1) s cos 6.
e It is a rotation of the (staggered) spin components by 7 over
the sites j=1,...,n.



The antiferromagnetic soliton

e The 57 with integer n such that cos ;75 < { solve the
boundary problems sy = s, spy1 = (— 1) s, with corresponding
energies Ej,.

e The soliton must be one of them.

e Since the nth problem is subsumed in the (n+ 1)st, we have
E,>E 1.

a
e The soliton has maximal integer n such that cos ;75 < 3.

e The soliton is

where cos = a/b and cos ;75 < 7 < cos o



The ferromagnetic soliton when 0 < a < |b|

e Locally defining the staggered spin operators S; = (—1)ij
provides a mapping b <— —b, 5; <— 5; between
ferromagnetic and antiferromagnetic solitons.

e The ferromagnetic soliton is

. . 41 . .
SJn = m sin (nT —J)H ~ SCOS]Q,

— T a u
where cosf = a/|b| and cos ;77 < 5] < €OS



BCHI soliton

F1GURE : Soliton interpolating between doubly degenerate ground states
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The size n of the soliton depends only on a/|b| :

COos n+1 < |b| < cos

+2
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Solitons as excitations

e The energy of excitation A(n) of the soliton of size n can be
computed in closed form.

o x a
e In the large-n limit, cos & ~ To] ™ 1, and

A(n) ~ |bls? % (1),

n

or equivalently

A(g) ~ o2 2 (1- )"

e Solitons become massless as a — |b|, with critical exponent
1/2.

e Instability against pairs of soliton excitations as a — |b|
destroys the possibility of a long range order in the ground
state.



The periodic chains

e The BCHI model can be defined on the orientable closed
chain (i.e. the trivial fiber bundle [—s,s] x S!), and on the
non-orientable chain (i.e. the Mobius strip).

e When a defect is imposed by topology, it forces the two
degenerate ground states to meet.

e As a consequence, the defect is just the soliton found above.

e This yields the ground state on any periodic chain, for all a
and b.

TABLE : Number of allowed solitons on periodic chains of length N > 2.

Orientable chain Non-orientable chain
F(b<O0) | AF(b>0) | F(b<O0) | AF (b>0)
N even Even Even Odd Odd
N odd Even Odd Odd Even
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