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The Blume-Capel-Haldane-Ising (BCHI) model

We study the 1-d model

H =
N∑
i=1

a(Sz
i )2 + bSz

i S
z
i+1,

with trivial eigenstates |{si}〉, where si ∈ {−s,−s + 1, . . . , s}.

• The case a = 0 and s = 1
2 is the Ising model.

• The case s = 1 is the Blume-Capel model.

• It is the anisotropy part of the model studied by Haldane :

HHaldane = |J|
N∑
i=1

Si · Si+1 + µ(Sz
i )2 + λSz

i S
z
i+1.



Haldane’s model

HHaldane = |J|
N∑
i=1

Si · Si+1 + µ(Sz
i )2 + λSz

i S
z
i+1

• Haldane studied the model for large spin with small
anisotropy, and 0 < µ < λ.

• He observed that the Z2 symmetry is broken by the two
classical ground-states (Néel ordered).

• He mapped the model to an integrable non-linear sigma
model.

• He obtained the soliton interpolating between the degenerate
ground-states.

• He conjectured that integer spins have a mass gap, whereas
half-odd spins have a gapless spectrum.



Ground state and solitons in BCHI

For the much simpler model

H =
N∑
i=1

a(Sz
i )2 + bSz

i S
z
i+1

it is of relevance to find the ground state and the soliton
(whenever Z2 is spontaneously broken) for all values of a and b.

Our expressions will be :

• Semiclassical. si ∈ [−s, s] ; the quantum states will be the
closest states with integer or half-odd si ;

• Exact. No need to assume a slowly varying field.



Ground state for S z
N+1 = S z

1 , N even

This is the simplest case : no topological defect. One finds by
induction or direct inspection :

Figure : Ground state for N even and arbitrary spin s
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BCHI soliton

Figure : Soliton interpolating between doubly degenerate ground states
(when applicable)
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The non-trivial case is when 0 < a < |b|.



Antiferromagnetic soliton when 0 < a < b

• Set s0 = s and sn+1 = (−1)ns, connecting the two Néel
ground states, n ≥ 1.

• The energy of the generic state |s0, . . . , sn+1〉 is

E =
1

2
sTBns + 2as2 + bsTt ,

s = (s1, s2, . . . , sn)T and t = (s, 0, . . . , 0, (−1)ns)T.

• The critical points are given by

Bns = −bt.

• Bn is the Hessian matrix of E .

• If Bn is positive definite, hence invertible, the (unique) critical
point s = −b(Bn)−1t minimizes E .



Eigenvalues of Bn

Bn is tridiagonal Toeplitz :

Bn =



2a b
b 2a b

b 2a b
· · ·
· · ·
· · ·

b 2a b
b 2a


n×n

Its eigenvalues are known :

λj = 2
(
a + b cos jπ

n+1

)
, j = 1, 2, . . . , n.

The Hessian is positive definite for cos π
n+1 <

a
b .



The critical point

• The point s = −b(Bn)−1t solves the boundary problem
s0 = s, sn+1 = (−1)ns if cos π

n+1 <
a
b .

• Explicitely

sj = s̄nj
def
= (−1)j s

sin(n+1)θ/2 sin
(
n+1
2 − j

)
θ , j = 1, . . . , n,

where cos θ = a/b.

• s̄nj ∈ [−s, s].

• For large n (i.e. a . b),

s̄nj ∼ (−1)js cos jθ.

• It is a rotation of the (staggered) spin components by π over
the sites j = 1, . . . , n.



The antiferromagnetic soliton

• The s̄nj with integer n such that cos π
n+1 <

a
b solve the

boundary problems s0 = s, sn+1 = (−1)ns, with corresponding
energies En.

• The soliton must be one of them.

• Since the nth problem is subsumed in the (n + 1)st, we have
En > En+1.

• The soliton has maximal integer n such that cos π
n+1 <

a
b .

• The soliton is

s̄nj = (−1)j s
sin(n+1)θ/2 sin

(
n+1
2 − j

)
θ ∼ (−1)js cos jθ,

where cos θ = a/b and cos π
n+1 <

a
b < cos π

n+2 .



The ferromagnetic soliton when 0 < a < |b|

• Locally defining the staggered spin operators S̄j ≡ (−1)jSj
provides a mapping b ←→ −b, Sj ←→ S̄j between
ferromagnetic and antiferromagnetic solitons.

• The ferromagnetic soliton is

snj = s
sin(n+1)θ/2 sin

(
n+1
2 − j

)
θ ∼ s cos jθ,

where cos θ = a/|b| and cos π
n+1 <

a
|b| < cos π

n+2 .



BCHI soliton

Figure : Soliton interpolating between doubly degenerate ground states
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The size n of the soliton depends only on a/|b| :

cos π
n+1 <

a
|b| < cos π

n+2 .



Solitons as excitations

• The energy of excitation ∆(n) of the soliton of size n can be
computed in closed form.

• In the large-n limit, cos πn ∼
a
|b| ∼ 1, and

∆(n) ∼ |b|s2 π2

2

(
1
n

)
,

or equivalently

∆
(

a
|b|
)
∼ |b|s2 π√

2

(
1− a

|b|

)1/2
.

• Solitons become massless as a→ |b|, with critical exponent
1/2.

• Instability against pairs of soliton excitations as a→ |b|
destroys the possibility of a long range order in the ground
state.



The periodic chains

• The BCHI model can be defined on the orientable closed
chain (i.e. the trivial fiber bundle [−s, s]× S1), and on the
non-orientable chain (i.e. the Möbius strip).

• When a defect is imposed by topology, it forces the two
degenerate ground states to meet.

• As a consequence, the defect is just the soliton found above.

• This yields the ground state on any periodic chain, for all a
and b.

Table : Number of allowed solitons on periodic chains of length N ≥ 2.

Orientable chain Non-orientable chain

F (b < 0) AF (b > 0) F (b < 0) AF (b > 0)

N even Even Even Odd Odd

N odd Even Odd Odd Even
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