The ground state of the Blume-Capel-Haldane-Ising spin chain

Christian Boudreault, Solomon Owerre, Manu Paranjape Groupe de physique des particules, Université de Montréal arXiv :1601.06195 [cond-mat.str-el]

June 14, 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Blume-Capel-Haldane-Ising (BCHI) model

We study the 1-d model

$$H = \sum_{i=1}^{N} a(S_i^z)^2 + bS_i^z S_{i+1}^z,$$

with trivial eigenstates $|\{s_i\}\rangle$, where $s_i \in \{-s, -s+1, \ldots, s\}$.

- The case a = 0 and $s = \frac{1}{2}$ is the Ising model.
- The case s = 1 is the Blume-Capel model.
- It is the anisotropy part of the model studied by Haldane :

$$\mathcal{H}_{\mathsf{Haldane}} = |J| \sum_{i=1}^{N} \mathbf{S}_i \cdot \mathbf{S}_{i+1} + \mu(S_i^z)^2 + \lambda S_i^z S_{i+1}^z.$$

Haldane's model

$$H_{\mathsf{Haldane}} = |J| \sum_{i=1}^{N} \mathbf{S}_i \cdot \mathbf{S}_{i+1} + \mu(S_i^z)^2 + \lambda S_i^z S_{i+1}^z$$

- Haldane studied the model for large spin with small anisotropy, and 0 < μ < λ .
- He observed that the Z₂ symmetry is broken by the two classical ground-states (Néel ordered).
- He mapped the model to an integrable non-linear sigma model.
- He obtained the soliton interpolating between the degenerate ground-states.
- He conjectured that integer spins have a mass gap, whereas half-odd spins have a gapless spectrum.

Ground state and solitons in BCHI

For the much simpler model

$$H = \sum_{i=1}^{N} a(S_{i}^{z})^{2} + bS_{i}^{z}S_{i+1}^{z}$$

it is of relevance to find the ground state and the soliton (whenever \mathbb{Z}_2 is spontaneously broken) for all values of *a* and *b*.

Our expressions will be :

• **Semiclassical**. *s_i* ∈ [−*s*, *s*]; the quantum states will be the closest states with integer or half-odd *s_i*;

• Exact. No need to assume a slowly varying field.

Ground state for $S_{N+1}^z = S_1^z$, N even

This is the simplest case : no topological defect. One finds by induction or direct inspection :

FIGURE : Ground state for N even and arbitrary spin s

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

BCHI soliton

FIGURE : Soliton interpolating between doubly degenerate ground states (when applicable)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The non-trivial case is when 0 < a < |b|.

Antiferromagnetic soliton when 0 < a < b

- Set s₀ = s and s_{n+1} = (−1)ⁿs, connecting the two Néel ground states, n ≥ 1.
- The energy of the generic state $|s_0,\ldots,s_{n+1}
 angle$ is

$$E = \frac{1}{2}\mathbf{s}^{\mathsf{T}}B_{n}\mathbf{s} + 2as^{2} + b\mathbf{s}^{\mathsf{T}}\mathbf{t} ,$$

$$\mathbf{s} = (s_1, s_2, \dots, s_n)^\mathsf{T}$$
 and $\mathbf{t} = (s, 0, \dots, 0, (-1)^n s)^\mathsf{T}.$

• The critical points are given by

$$B_n \mathbf{s} = -b\mathbf{t}.$$

- B_n is the Hessian matrix of E.
- If B_n is positive definite, hence invertible, the (unique) critical point $\mathbf{s} = -b(B_n)^{-1}\mathbf{t}$ minimizes E.

Eigenvalues of B_n

 B_n is tridiagonal Toeplitz :

Its eigenvalues are known :

$$\lambda_j = 2ig(\mathbf{a} + b \cos rac{j\pi}{n+1} ig), \qquad j = 1, 2, \dots, n.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Hessian is positive definite for $\cos \frac{\pi}{n+1} < \frac{a}{b}$.

The critical point

- The point $\mathbf{s} = -b(B_n)^{-1}\mathbf{t}$ solves the boundary problem $s_0 = s$, $s_{n+1} = (-1)^n s$ if $\cos \frac{\pi}{n+1} < \frac{a}{b}$.
- Explicitely

$$s_j = \overline{s}_j^n \stackrel{\text{def}}{=} rac{(-1)^j s}{\sin(n+1)\theta/2} \sin\left(rac{n+1}{2} - j
ight) heta \quad , \quad j = 1, \dots, n,$$

- where $\cos \theta = a/b$.
- $\bar{s}_j^n \in [-s,s].$
- For large n (i.e. $a \lesssim b$),

$$\bar{s}_j^n \sim (-1)^j s \cos j\theta.$$

 It is a rotation of the (staggered) spin components by π over the sites j = 1,..., n.

The antiferromagnetic soliton

- The s
 jⁿ with integer n such that cos π/n+1 < a/b solve the boundary problems s₀ = s, s{n+1} = (−1)ⁿs, with corresponding energies E_n.
- The soliton must be one of them.
- Since the *n*th problem is subsumed in the (n + 1)st, we have $E_n > E_{n+1}$.
- The soliton has maximal integer *n* such that $\cos \frac{\pi}{n+1} < \frac{a}{b}$.
- The soliton is

$$\bar{s}_j^n = \frac{(-1)^j s}{\sin(n+1)\theta/2} \, \sin\left(\frac{n+1}{2} - j\right)\theta \sim (-1)^j s \cos j\theta,$$

where $\cos \theta = a/b$ and $\cos \frac{\pi}{n+1} < \frac{a}{b} < \cos \frac{\pi}{n+2}$.

The ferromagnetic soliton when 0 < a < |b|

- Locally defining the staggered spin operators $\overline{S}_j \equiv (-1)^j S_j$ provides a mapping $b \leftrightarrow -b$, $S_j \leftrightarrow \overline{S}_j$ between ferromagnetic and antiferromagnetic solitons.
- The ferromagnetic soliton is

$$s_j^n = rac{s}{\sin(n+1)\theta/2} \sin\left(rac{n+1}{2} - j
ight) \theta \sim s \cos j \theta$$

where $\cos \theta = a/|b|$ and $\cos \frac{\pi}{n+1} < \frac{a}{|b|} < \cos \frac{\pi}{n+2}$.

BCHI soliton

 $\ensuremath{\operatorname{Figure}}$: Soliton interpolating between doubly degenerate ground states

The size *n* of the soliton depends only on a/|b|:

$$\cos \frac{\pi}{n+1} < \frac{a}{|b|} < \cos \frac{\pi}{n+2}.$$

Solitons as excitations

- The energy of excitation Δ(n) of the soliton of size n can be computed in closed form.
- In the large- $n \text{ limit, } \cos rac{\pi}{n} \sim rac{a}{|b|} \sim 1$, and

$$\Delta(n) \sim |b|s^2 \frac{\pi^2}{2} \left(\frac{1}{n}\right),$$

or equivalently

$$\Deltaig(rac{a}{|b|}ig) \sim |b|s^2 \, rac{\pi}{\sqrt{2}} \left(1 - rac{a}{|b|}
ight)^{1/2}.$$

- Solitons become massless as $a \rightarrow |b|$, with critical exponent 1/2.
- Instability against pairs of soliton excitations as $a \rightarrow |b|$ destroys the possibility of a long range order in the ground state.

The periodic chains

- The BCHI model can be defined on the orientable closed chain (i.e. the trivial fiber bundle $[-s, s] \times S^1$), and on the non-orientable chain (i.e. the Möbius strip).
- When a defect is imposed by topology, it forces the two degenerate ground states to meet.
- As a consequence, the defect is just the soliton found above.
- This yields the ground state on any periodic chain, for all *a* and *b*.

TABLE : Number of allowed solitons on periodic chains of length $N \ge 2$.

	Orientable chain		Non-orientable chain	
	F (<i>b</i> < 0)	AF $(b > 0)$	F (<i>b</i> < 0)	AF $(b > 0)$
N even	Even	Even	Odd	Odd
N odd	Even	Odd	Odd	Even

Christian Boudreault, Solomon Owerre, Manu Paranjape Groupe de physique des particules, Université de Montréal

June 14, 2016