

Searching for 0vββ with EXO-200 and nEXO

- Motivation for $\beta\beta$ search
- The EXO-200 and nEXO experiments

Thomas Brunner for the nEXO collaboration CAP2016 – June 13, 2016

Neutrino oscillations

SNO, picture taken from http://www.oit.on.ca

Relative mass scale

- Indicate a neutrino mass
- Determination of mixing angle θ_{ii}
- Indicate mass hierarchy
- Determination of δm^{2}

Pontecorvo–Maki–Nakagawa–Sakata matrix

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_{m1} \\ v_{m2} \\ v_{m3} \end{pmatrix}$$

Normal Hierarchy

Inverted Hierarchy (only if $m_1^2 \ge \Delta m_{atm}^2$)

Neutrino oscillations

SNO, picture taken from http://www.oit.on.ca

Relative mass scale

- Indicate a neutrino mass
- Determination of mixing angle θ_{ii}
- Indicate mass hierarchy
- Determination of δm^{2}

Pontecorvo–Maki–Nakagawa–Sakata matrix

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_{m1} \\ v_{m2} \\ v_{m3} \end{pmatrix}$$

What oscillation experiments cannot tell us about v's

- What is the absolute mass scale
- Why is the neutrino mass so small?
- What is the nature of the v: Dirac or Majorana?

→Search for $0\nu\beta\beta$ decay

Double beta decay

M.Goeppert-Mayer, Phys. Rev. 48 (1935) 512

Double beta decay

M.Goeppert-Mayer, Phys. Rev. 48 (1935) 512

The most promising approach to determine the nature of the neutrino! Lepton number is violated in this decay!

Neutrinoless double beta decay

Neutrinoless double beta decay

Double Beta Decay

- If first-order beta decay is forbidden energetically or by spin, secondorder double beta decay (a weak nuclear process) can be observed
- True for several isotopes such as: ⁴⁸Ca, ⁷⁶Ge, ¹³⁰Te, ¹³⁶Xe

Searching for $0\nu\beta\beta$ in ^{136}Xe with EXO

Liquid-Xe Time Projection Chamber

- Liquid Xe at 168K
- Cryogenic electronics in LXe
- Detection of scintillation light and secondary charges
- 2D read out of secondary charges at segmented anode
- Full 3D event reconstruction:
 - 1. Energy reconstruction
 - 2. Position reconstruction
 - 3. Event Multiplicity

Searching for $0\nu\beta\beta$ in ^{136}Xe with EXO

Liquid-Xe Time Projection Chamber

- Liquid Xe at 168K
- Cryogenic electronics in LXe
- Detection of scintillation light and secondary charges
- 2D read out of secondary charges at segmented anode
- Full 3D event reconstruction:
 - 1. Energy reconstruction
 - 2. Position reconstruction
 - 3. Event Multiplicity

 $T_{1/2}^{0v} > 10^{25}$ years !! \rightarrow Need:

- high target mass
- o high exposure
- \circ low background rate
- \circ good energy resolution

Natural radiation decay rates

A banana A bicycle tire 1 l outdoor air 100 kg of ¹³⁶Xe (2v) ~10 decays/s ~0.3 decays/s

- ~1 decay/min
- ~1 decay/10 min

 $0\nu\beta\beta$ decay Age of universe >1000 x rarer than $2\nu\beta\beta$ 1.4 x 10^{10} years

Advantages of ¹³⁶Xe

- Easy to enrich: 8.9% natural abundance but can be enriched relatively easily (better than growing crystals)
- Can be purified continuously, and reused
- High Q_{ββ} (2458 keV): higher than most naturally occurring backgrounds
- Minimal cosmogenic activation: no long-life radioactive isotopes
- Energy resolution: improves using scintillation and charge anti-correlation
- LXe self shielding
- Background can be potentially reduced by Ba⁺⁺ tagging

Phased approach:

1. EXO-200: 200kg liquid-Xe TPC

2. nEXO: 5-ton liquid Xe TPC with Ba tagging option (SNO lab cryopit)

Advantages of ¹³⁶Xe

- Easy to enrich: 8.9% natural abundance but can be enriched relatively easily (better than growing crystals)
- Can be purified continuously, and reused
- High Q_{ββ} (2458 keV): higher than most naturally occurring backgrounds
- Minimal cosmogenic activation: no long-life radioactive isotopes
- Energy resolution: improves using scintillation and charge anti-correlation
- LXe self shielding
- Background can be potentially reduced by Ba⁺⁺ tagging

See talks by

- Y. Lan M1-4
- R. Gornea T1-5

Phased approach:

1. EXO-200: 200kg liquid-Xe TPC

2. nEXO: 5-ton liquid Xe TPC with Ba tagging option (SNO lab cryopit)

Located at the Waste Isolation Pilot Plant at 32°22'30″N 103°47'34″W (Carlsbad, NM).

- 2150 feet depth (~655m),
 ≈1585 mwe flat overburden
- U.S. DOE permanent repository for nuclear waste
- Low radioactivity levels:
 - U, Th <100ppb
 - Radon background < 10 Bq/m³

EXO-200 Time Projection Chamber (TPC) Basics

- Z-position from the time difference between scintillation and ionization
- Event energy from the combination of ionization and scintillation
- TPC allows rejection of some gamma backgrounds because Compton scattering results in multiple energy deposits

May 7, 2015

Thomas Brunner

EXO-200 TPC

Teflon Reflectors (increase light collection)

 APD plane and wire planes (wires are photo-etched)

Central HV plane (photo-etched phosphor bronze)

Acrylic supports and field shaping rings

Kapton flex cables (spring connections eliminate solder joints and glue)

- Copper vessel 1.37 mm thick
 175 kg LXe, 80.6% enr. in ¹³⁶Xe
 Copper conduits (6) for:
- •APD bias and readout cables
- •U+V wires bias and readout
- •LXe supply and return
- •Epoxy feedthroughs at cold and warm doors
- •Dedicated HV bias line

 EXQ-200 detector:
 JINST 7 (2012) P05010

 Characterization of APDs:
 NIM A608 68-75 (2009)

 Materials screening:
 NIM A591, 490-509 (2008)

Energy measurement

Combination of charge and light

'Rotation angle' determined weekly using ²²⁸Th source data, defined as angle which gives best 'rotated' resolution

Energy resolution is dominated by APD noise

Position/multiplicity reconstruction

Background measurement/reduction

²²⁸Th calibration source in EXO-200 detector

Events with > 1 charge cluster: multi-site (MS) events Event with 1 charge cluster: single-site (SS) events 0vββ: ~90% SS γs: ~30% SS at 0vββ energy

MS events used to constrain background models

June 13, 2016

18

Recent $0\nu\beta\beta$ decay result

Recent $0\nu\beta\beta$ decay result

Phys. Rev. Lett. 109, 032505 (2012)

EXO-200 $(0\nu)\beta\beta$ search

- 2011 First measurement of $2\nu\beta\beta$ in ¹³⁶Xe [PRL 107, 212501 (2011)]
- 2012 First $0\nu\beta\beta$ result, best m_{$\beta\beta$} limit [PRL 109, 032505 (2012)]
- 2013 Most precisely measured $2\nu\beta\beta$ rate and the lowest \rightarrow slowest process ever directly measured in nature! [PRC 89, 015502 (2014)]
- 2014 Improved sensitivity to $m_{\beta\beta}$ [Nature 510, 229 (2014)]

 $T_{1/2}^{0\nu\beta\beta} > 1.1 \times 10^{25} yr @ 90\% C.L.$

EXO-200 $(0\nu)\beta\beta$ search

- 2011 First measurement of $2\nu\beta\beta$ in ¹³⁶Xe [PRL 107, 212501 (2011)]
- 2012 First $0\nu\beta\beta$ result, best m_{$\beta\beta$} limit [PRL 109, 032505 (2012)]
- 2013 Most precisely measured $2\nu\beta\beta$ rate and the lowest \rightarrow slowest process ever directly measured in nature! [PRC 89, 015502 (2014)]
- 2014 Improved sensitivity to $m_{\beta\beta}$ [Nature 510, 229 (2014)]

The future of EXO-200

Event locations more than 2,300 feet apart

EXO-200 is about

1.2 km from the

radiation event

- Feb. 5 2014: Fire in WIPP underground
- Feb. 14, 2014: Radiation release event
- So far no radioactivity has been measured at EXO-200
- EXO clean up finished
- Low background data taking resumed in early 2016
- Stay tuned for new results

$0\nu\beta\beta$ search with EXO

Multi-phase program :

- EXO-200 operational at WIPP mine: ¹E
 - ~175kg xenon enriched at ~80%
 - Current limit on $0\nu\beta\beta$: 1.1 x 10²⁵ years (EXO-200)
 - Continue data taking for 2 more years
 - Sensitivity: 100-200 meV
- **nEXO** R&D underway:
 - 5T xenon enriched at ~90%
 - Sensitivity: 5-30 meV
 - Improved techniques for background suppression and possibly Ba tagging

→ Development of nEXO is well advanced

$0\nu\beta\beta$ search with EXO

Multi-phase program :

- EXO-200 operational at WIPP mine: ¹E
 - ~175kg xenon enriched at ~80%
 - Current limit on 0vββ: 1.1 x 10²⁵ years (EXO-200)
 - Continue data taking for 2 more years
 - Sensitivity: 100-200 meV
- **nEXO** R&D underway:
 - 5T xenon enriched at ~90%
 - Sensitivity: 5-30 meV
 - Improved techniques for background suppression and possibly Ba tagging

For more information on Ba tagging:

- Y. Lan M1-4
- R. Gornea T1-5

Searching for $0\nu\beta\beta$ with nEXO

Searching for $0\nu\beta\beta$ with nEXO

- Next-generation neutrinoless double beta decay detector
- 5 t liquid xenon TPC similar to EXO-200 (50x the size)
- Possible location in SNOLab Cryo Pit (6010 mwe)
- SiPM for light detection
- Tiles for charge read out
- 3D event reconstruction
- Expected σ/E of 1% at Q-value
- Possible addition of Ba-tagging after 5 years

SiPM Photodetector

- Hamamatsu produces devices with QE= ~12% @ 175nm but encapsulation is too radioactive → trying to procure un-encapsulated devices
- First nEXO-specific run at FBK (Italy) provided ~10% QE [1.Ostrovskiy et al. IEEE TNS 62 (2015) 1825.]
- New FBK "RGB" devices reach 15% QE with 7.7x7.7mm².

- Working closely with manufacturers to develop SiPMs to reach >15% QE at 175nm
- Radioassay of SiPMs to determine radioactivity
- Development of integration of 1x1cm² SiPMs into 10x10cm² tiles
- Tests in liquid Xe planned

Hamamatsu MEG MPPC

FBK SiPM

SiPM Photodetector

- Hamamatsu produces devices with QE= ~12% @ 175nm but encapsulation is too radioactive → trying to procure un-encapsulated devices
- First nEXO-specific run at FBK (Italy) provided ~10% QE [1.Ostrovskiy et al. IEEE TNS 62 (2015) 1825.]
- New FBK "RGB" devices reach 15% QE with 7.7x7.7mm².

Charge Readout Tiles

- EXO-200 used wires for charge-readout
- Produced by IHEP/IME; functional testing in LXe in the US.
- 10 x 10cm² Prototype Tile
- Metallized strips on fused silica substrate
- 60 orthogonal channels (30 x 30)
- 3mm strip pitch
- Strip intersections isolated with SiO₂ layer
- Currently testing in LXe with a ²⁰⁷Bi source

Summary & Plans

- EXO-200 is operational and taking low background data
- nEXO is the next generation $0\nu\beta\beta$ experiment with 5 T isotopically enriched LXe
- nEXO expands on the success of EXO-200 and improves performance via R&D efforts
- nEXO will have many handles on background
- nEXO has discovery potential in Inverted Hierarchy pushing the lower bound of $< m_{\beta\beta} >$
- The 10meV region is within reach
- Strong Canadian contribution to EXO-200 and nEXO

For the mean values of oscillation parameters (dashed) and for the 3 σ errors (full)

University of Alabama, Tuscaloosa AL, USA — T Didberidze, M Hughes, A Piepke, R Tsang University of Bern, Switzerland — J-L Vuilleumier Brookhaven National Laboratory, Upton NY, USA — M Chiu, G De Geronimo, S Li, V Radeka, T Rao, G Smith, T Tsang, B Yu California Institute of Technology, Pasadena CA, USA - P Vogel Carleton University, Ottawa ON, Canada — I Badhrees, Y Baribeau, M Bowcock, M Dunford, M Facina, R Gornea, K Graham, P Gravelle, R Killick, T Koffas, C Licciardi, K McFarlane, R Schnarr, D Sinclair Colorado State University, Fort Collins CO, USA — C Chambers, A Craycraft, W Fairbank Jr, T Walton Drexel University, Philadelphia PA, USA — E Callaghan, MJ Dolinski, YH Lin, E Smith, Y-R Yen Duke University, Durham NC, USA – PS Barbeau, G Swift University of Erlangen-Nuremberg, Erlangen, Germany — G Anton, R Bayerlein, J Hoessl, P Hufschmidt, A Jamil, T Michel, T Ziegler IBS Center for Underground Physics, Daejeon, South Korea - DS Leonard IHEP Beijing, People's Republic of China — G Cao, W Cen, X Jiang, H Li, Z Ning, X Sun, T Tolba, W Wei, L Wen, W Wu, J Zhao ITEP Moscow, Russia — V Belov, A Burenkov, A Karelin, A Kobyakin, A Kuchenkov, V Stekhanov, O Zeldovich University of Illinois, Urbana-Champaign IL, USA — D Beck, M Coon, S Li, L Yang Indiana University, Bloomington IN, USA — JB Albert, S Daugherty, TN Johnson, LJ Kaufman, G Visser, J Zettlemoyer University of California, Irvine, Irvine CA, USA - M Moe Laurentian University, Sudbury ON, Canada — B Cleveland, A Der Mesrobian-Kabakian, J Farine, U Wichoski Lawrence Livermore National Laboratory, Livermore CA, USA — O Alford, J Brodsky, M Heffner, G Holtmeier, A House, M Johnson, S Sangiorgio University of Massachusetts, Amherst MA, USA – S Feyzbakhsh, S Johnston, M Negus, A Pocar McGill University, Montreal QC, Canada — T Brunner, K Murray Oak Ridge National Laboratory, Oak Ridge TN, USA — L Fabris, D Hornback, RJ Newby, K Ziock Pacific Northwest National Laboratory, Richland, WA, USA - EW Hoppe, JL Orrell Rensselaer Polytechnic Institute, Troy NY, USA - E Brown, K Odgers Université de Sherbrooke — S Charlebois, D Danovitch, R Fontaine, JF Pratte, J Sylvestre SLAC National Accelerator Laboratory, Menlo Park CA, USA — J Dalmasson, T Daniels, S Delaguis, G Haller, R Herbst, M Kwiatkowski, A Odian, M Oriunno, B Mong, PC Rowson, K Skarpaas University of South Dakota, Vermillion SD, USA — J Daughhetee, R MacLellan Stanford University, Stanford CA, USA — R DeVoe, D Fudenberg, G Gratta, M Jewell, S Kravitz, D Moore, I Ostrovskiv, A Schubert, M Weber Stony Brook University, SUNY, Stony Brook, NY, USA – K Kumar, O Njoya, M Tarka Technical University of Munich, Garching, Germany - P Fierlinger, M Marino TRIUMF, Vancouver BC, Canada — J Dilling, P Gumplinger, R Krücken, Y. Lan, F Retière, V Strickland

1

University of Bern, Switzerland — J-L Vuilleumier Brookhaven National Laboratory, Upton NY, USA — M Chiu, G De Geronimo, S Li, V Radeka, T Rao, G Smith, T Tsang, B Yu California Institute of Technology Pasadena CA_USA - P Vogel Carleton University, Ottaw Thanks to my Canadian collaborators: R (Colorado State University, Drexel University, Philadel Duke University, Durham **Carleton University** University of Erlangen-Nu **IBS** Center for Undergroun IHEP Beijing, People's Rep ITEP Moscow, Russia – V University of Illinois, Urba Laurentian University Indiana University, Bloomi University of California, Irv Laurentian University, Sud Lawrence Livermore Nation **McGill University** University of Massachusett McGill University, Montrea Oak Ridge National Labora Pacific Northwest National Universite de Sherbrooke S Rensselaer Polytechnic Ins Université de Sherbrooke -**SLAC National Accelerator** IUMF University of South Dakota TRIUMF Stanford University, Stanfo

Stony Brook University, SUNY, Stony Brook, NY, USA – K Kumar, O Njoya, M Tarka Technical University of Munich, Garching, Germany — P Fierlinger, M Marino TRIUMF, Vancouver BC, Canada — J Dilling, P Gumplinger, R Krücken, Y. Lan, F Retière, V Strickland

University of Alabama, Tuscaloosa AL, USA — T Didberidze, M Hughes, A Piepke, R Tsang University of Bern, Switzerland — J-L Vuilleumier hank you for your attention Brookhaven National Laboratory, Upton NY, USA — M Chiu, G De Geronimo, S Li, V Radeka, T Rao, G Smith, T Tsang, B Y California Institute of Technology, Pasadena CA, USA — P Vogel Carleton University, Ottawa ON, Canada — I Badhrees, Y Baribeau, M Bowcock, M Dunford, M Facina, Colorado State University, Fort Collins CO, USA — C Chambers, A Craycraft, W Fairbank Drexel University, Philadelphia PA, USA — E Callaghan, MJ Dolinski, YH Lin, E Sr Duke University, Durham NC, USA – PS Barbeau, G Swift University of Erlangen-Nuremberg, Erlangen, Germany — G Antop IBS Center for Underground Physics, Daejeon, South Korea IHEP Beijing, People's Republic of China — G Cao ITEP Moscow, Russia — V Belov, A Burenkov University of Illinois, Urbana-Champ Indiana University, Blooming University of Califorr Laurentian U Lawrence Live University of Mas , Amherst MA, USA —S Feyzbakhsh, S Johnston, M Negus, A Pocar McGill University, Jontreal QC, Canada — T Brunner, K Murray Oak Ridge National Laboratory, Oak Ridge TN, USA - L Fabris, D Hornback, RJ Newby, K Ziock Pacific Northwest National Laboratory, Richland, WA, USA - EW Hoppe, JL Orrell Rensselaer Polytechnic Institute, Troy NY, USA - E Brown, K Odgers Université de Sherbrooke — S Charlebois, D Danovitch, R Fontaine, JF Pratte, J Sylvestre SLAC National Accelerator Laboratory, Menlo Park CA, USA — J Dalmasson, T Daniels, S Delaguis, G Haller, R Herbst, M Kwiatkowski, A Odian, M Oriunno, B Mong, PC Rowson, K Skarpaas University of South Dakota, Vermillion SD, USA - J Daughhetee, R MacLellan Stanford University, Stanford CA, USA — R DeVoe, D Fudenberg, G Gratta, M Jewell, S Kravitz, D Moore, I Ostrovskiv, A Schubert, M Weber Stony Brook University, SUNY, Stony Brook, NY, USA – K Kumar, O Njoya, M Tarka Technical University of Munich, Garching, Germany - P Fierlinger, M Marino TRIUMF, Vancouver BC, Canada — J Dilling, P Gumplinger, R Krücken, F Retière, V Strickland

Backup

nEXO - Homogeneity is Crucial

- Increased mass
- Taking full advantage of self shielding
 - more effective
 - Improve Compton tag efficiency by double-hit recognition

LXe mass (kg)	Diameter or length (cm)
5000	130
150	40
5	13

→ Benefits of monolithic detector compared to segmented detectors

June 13, 2016

Thomas Brunner

Physics searches with EXO-200

An Optimal Energy Estimator to Reduce Correlated Noise for the EXO-200 Light Readout C.G. Davis et al. Submitted to JINST (May 2016). arxiv:1605.06552 [physics.ins-det] Cosmogenic Backgrounds to 0vßß in EXO-200 J.B. Albert et al., J. Cosmol. & Astropart. Phys. (JCAP) 2016 4 (2016) 029 First Search for Lorentz and CPT Violation in Double Beta Decay with EXO-200 J.B. Albert et al., Phys. Rev. D 93, 072001 Search for 2vββ decay of ¹³⁶Xe to the 0,⁺ excited state of ¹³⁶Ba with EXO-200 J.B. Albert et al., Phys. Rev. C 93, 035501 Measurements of the ion fraction and mobility of alpha and beta decay products in liquid xenon using **EXO-200** J.B. Albert et al., Phys. Rev. C 92, 045504 (2015). Investigation of radioactivity-induced backgrounds in EXO-200 J.B. Albert et al. Phys. Rev. C 92, 015503 (2015). Search for Majoron-emitting modes of double-beta decay of ¹³⁶Xe with EXO-200 J.B. Albert, et al. Phys. Rev. D 90, 092004 (2014). Search for Majorana neutrinos with the first two years of EXO-200 data J.B. Albert, et al. Nature 510 (2014) 229-234 An improved measurement of the 2vßß half-life of Xe-136 with EXO-200 J.B. Albert, et al. Phys. Rev. C 89, 015502 (2014) Search for Neutrinoless Double-Beta Decay in ¹³⁶Xe with EXO-200 M. Auger, et al. Phys. Rev. Lett. 109, 032505 (2012) **Observation of Two-Neutrino Double-Beta Decay in Xe-136 with EXO-200** N. Ackerman, et al. Phys. Rev. Lett. 107, 212501 (2011)

EXO-200 $0\nu\beta\beta$ search

- 2011 First measurement of $2\nu\beta\beta$ in ¹³⁶Xe [PRL 107, 212501 (2011)]
- 2012 First $0\nu\beta\beta$ result, best m_{$\beta\beta$} limit [PRL 109, 032505 (2012)]
- 2013 Most precisely measured $2\nu\beta\beta$ rate and the lowest \rightarrow slowest process ever directly measured in nature! [PRC 89, 015502 (2014)]
- 2014 Improved sensitivity to $m_{\beta\beta}$ [Nature 510, 229 (2014)]

NMEs used:		
Model:	M _{0v} :	Reference:
EDF	4.20	PRL 105, 252503 (2010)
ISM	2.19	Nucl Phys A 818, 139 (2009)
IBM-2	3.05	PRC 91, 034304 (2015)
Skyrme QRPA	1.55	PRC 87 064302 (2013)
QRPA	2.02	PRC 89, 064308 (2014)

Photon Detection

Thomas Brunner

The role of the standoff distance in background identification and suppression

Example: nEXO, 5 yr data, $0\nu\beta\beta @ T_{1/2}=6.6x10^{27}$ yr, projected backgrounds from subsets of the total volume

The fit gets to see all this information and use it in the optimal way