Searching for $0\nu\beta\beta$ with EXO-200 and nEXO

- Motivation for $\beta\beta$ search
- The EXO-200 and nEXO experiments

Thomas Brunner for the nEXO collaboration
Neutrino oscillations

Pontecorvo–Maki–Nakagawa–Sakata matrix

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
U_{e1} U_{e2} U_{e3} \begin{pmatrix}
\nu_{m1} \\
\nu_{m2} \\
\nu_{m3}
\end{pmatrix}
\]

Relative mass scale

- Indicate a neutrino mass
- Determination of mixing angle θ_{ij}
- Indicate mass hierarchy
- Determination of δm^2

Normal Hierarchy

Inverted Hierarchy (only if $m_1^2 \geq \Delta m_{atm}^2$)

\[
\begin{align*}
\Delta m_{\odot}^2 & \approx m_1^2 = ? \\
\Delta m_{atm}^2/4 & \Rightarrow m_3^2
\end{align*}
\]

$m_\nu = 0$
Neutrino oscillations

Pontecorvo–Maki–Nakagawa–Sakata matrix

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{pmatrix}
\begin{pmatrix}
\nu_{m1} \\
\nu_{m2} \\
\nu_{m3}
\end{pmatrix}
\]

What oscillation experiments cannot tell us about ν's

- What is the absolute mass scale
- Why is the neutrino mass so small?
- What is the nature of the ν: Dirac or Majorana?

→ Search for $0\nu\beta\beta$ decay

Relative mass scale

- Indicate a neutrino mass
- Determination of mixing angle θ_{ij}
- Indicate mass hierarchy
- Determination of δm^2
Double beta decay

M. Goeppert-Mayer, Phys. Rev. 48 (1935) 512

\[2\nu\beta\beta \]
Double beta decay

The process can only occur for a Majorana neutrino!

Lepton number is violated in this decay!

\[2\nu\beta\beta \]

\[0\nu\beta\beta \]

This process can only occur for a Majorana neutrino!
Neutrinoless double beta decay

![Diagram of neutrinoless double beta decay](image)

- **$0\nu\beta\beta$ peak** (normalized to 10^{-6})
- **$0\nu\beta\beta$ peak** (normalized to 10^{-2})

kinetic energy K_e of the two electrons

in units of kinematic endpoint (Q)

Smeared by the energy resolution of the hypothetical detector

June 13, 2016

Thomas Brunner
Neutrinoless double beta decay

\[
\left[T^{0\nu}_{1/2} \right]^{-1} = G^{0\nu} \left| M^{0\nu} \right|^2 \left\langle m_\nu \right\rangle^2
\]

Effective Majorana mass:

\[
\left\langle m_\nu \right\rangle = \left| \sum_i U_{ei}^2 m_i \epsilon_i \right| \quad \text{(light neutrino exchange mechanism only)}
\]

\(G^{0\nu} \) is a phase space factor

\(M^{0\nu} \) is the nuclear matrix element

\(0_{\nu\beta\beta} \) peak (normalized to \(10^{-6} \))

\(0_{\nu\beta\beta} \) peak (normalized to \(10^{-2} \))
If first-order beta decay is forbidden energetically or by spin, second-order double beta decay (a weak nuclear process) can be observed. True for several isotopes such as: ^{48}Ca, ^{76}Ge, ^{130}Te, ^{136}Xe.
Searching for $0\nu\beta\beta$ in 136Xe with EXO

Liquid-Xe Time Projection Chamber
- Liquid Xe at 168K
- Cryogenic electronics in LXe
- Detection of scintillation light and secondary charges
- 2D read out of secondary charges at segmented anode
- Full 3D event reconstruction:
 1. Energy reconstruction
 2. Position reconstruction
 3. Event Multiplicity
Searching for $0\nu\beta\beta$ in 136Xe with EXO

Liquid-Xe Time Projection Chamber
- Liquid Xe at 168K
- Cryogenic electronics in LXe
- Detection of scintillation light and secondary charges
- 2D read out of secondary charges at segmented anode
- Full 3D event reconstruction:
 1. Energy reconstruction
 2. Position reconstruction
 3. Event Multiplicity

Natural radiation decay rates
- A banana: ~ 10 decays/s
- A bicycle tire: ~ 0.3 decays/s
- 1 l outdoor air: ~ 1 decay/min
- 100 kg of 136Xe (2ν): ~ 1 decay/10 min

T_{1/2}^{0\nu} > 10^{25}$ years !!

→ Need:
- high target mass
- high exposure
- low background rate
- good energy resolution

$0\nu\beta\beta$ decay >1000 x rarer than $2\nu\beta\beta$
Age of universe 1.4 x 10^{10} years
Advantages of 136Xe

- **Easy to enrich**: 8.9% natural abundance but can be enriched relatively easily (better than growing crystals)
- **Can be purified** continuously, and reused
- **High $Q_{\beta\beta}$** (2458 keV): higher than most naturally occurring backgrounds
- **Minimal cosmogenic activation**: no long-life radioactive isotopes
- **Energy resolution**: improves using scintillation and charge anti-correlation
- **LXe self shielding**
- **Background can be potentially reduced by Ba$^{++}$ tagging**

Phased approach:

1. EXO-200: 200kg liquid-Xe TPC
2. nEXO: 5-ton liquid Xe TPC with Ba tagging option (SNO lab cryopit)
Advantages of 136Xe

- **Easy to enrich**: 8.9% natural abundance but can be enriched relatively easily (better than growing crystals)
- **Can be purified** continuously, and reused
- **High $Q_{\beta\beta}$ (2458 keV)**: higher than most naturally occurring backgrounds
- **Minimal cosmogenic activation**: no long-life radioactive isotopes
- **Energy resolution**: improves using scintillation and charge anti-correlation
- **LXe self shielding**
- **Background can be potentially reduced by Ba$^{++}$ tagging**

Phased approach:

1. **EXO-200**: 200kg liquid-Xe TPC
2. **nEXO**: 5-ton liquid Xe TPC with Ba tagging option (SNO lab cryopit)

See talks by
- Y. Lan M1-4
- R. Gornea T1-5
EXO-200

- Located at the Waste Isolation Pilot Plant at 32°22’30”N 103°47’34”W (Carlsbad, NM).
- 2150 feet depth (~655m), ≈1585 mwe flat overburden
- U.S. DOE permanent repository for nuclear waste
- Low radioactivity levels:
 - U, Th <100ppb
 - Radon background < 10 Bq/m³

June 13, 2016
Thomas Brunner
EXO-200 Time Projection Chamber (TPC) Basics

- **Z-position** from the time difference between scintillation and ionization
- **Event energy** from the combination of ionization and scintillation
- **TPC allows rejection of some gamma backgrounds** because Compton scattering results in multiple energy deposits

Avalanche photodiode (APD) array observes prompt scintillation

Crossed shielding and charge collection grids give x,y position

Common cathode

TPC modules

-8kV
EXO-200 TPC

Teflon Reflectors (increase light collection)

APD plane and wire planes (wires are photo-etched)

Central HV plane (photo-etched phosphor bronze)

Acrylic supports and field shaping rings

Kapton flex cables (spring connections eliminate solder joints and glue)
• Copper vessel 1.37 mm thick
• 175 kg LXe, 80.6% enr. in 136Xe
• Copper conduits (6) for:
 • APD bias and readout cables
 • U+V wires bias and readout
 • LXe supply and return
• Epoxy feedthroughs at cold and warm doors
• Dedicated HV bias line

EXO-200 detector: JINST 7 (2012) P05010
Characterization of APDs: NIM A608 68-75 (2009)
Energy measurement

Combination of charge and light

Energy resolution is dominated by APD noise

‘Rotation angle’ determined weekly using 228Th source data, defined as angle which gives best ‘rotated’ resolution

June 13, 2016
Position/multiplicity reconstruction

Background measurement/reduction

^{228}Th calibration source in EXO-200 detector

Events with > 1 charge cluster: multi-site (MS) events
Event with 1 charge cluster: single-site (SS) events

$0\nu\beta\beta$: $\sim 90\%$ SS
γ_s: $\sim 30\%$ SS at $0\nu\beta\beta$ energy

MS events used to constrain background models
Recent $0\nu\beta\beta$ decay result

Run 2 data consists of:
- Run 2a already used for PRC 2014 and PRL 2012
 09/22/2011 – 04/15/2012
- Runs 2b and 2c
 04/16/2012 – 09/01/2013
- 477.60$^{+0.01}_{-0.01}$ days of data

136Xe exposure: 99.8 kg yr

Simultaneous fit to energy and standoff distance for SS and MS

June 13, 2016 Thomas Brunner

Nature 510, 229 (2014)
Recent $0\nu\beta\beta$ decay result

39 counts in $\pm 2\sigma$ ROI

<table>
<thead>
<tr>
<th>Decay</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{232}Th</td>
<td>16.0</td>
</tr>
<tr>
<td>^{238}U</td>
<td>8.1</td>
</tr>
<tr>
<td>^{137}Xe</td>
<td>7.0</td>
</tr>
<tr>
<td>Total</td>
<td>31.1 \pm 3.8</td>
</tr>
</tbody>
</table>

From profile likelihood:

- $T_{1/2}^{0\nu\beta\beta} > 1.1 \cdot 10^{25}$ yr
- $\langle m_{\beta\beta} \rangle < 190 - 450$ meV
 (90\% C.L.)

Nature 510, 229 (2014)
EXO-200 (0ν)ββ search

2011 First measurement of $2\nu\beta\beta$ in 136Xe [PRL 107, 212501 (2011)]
2012 First $0\nu\beta\beta$ result, best $m_{\beta\beta}$ limit [PRL 109, 032505 (2012)]
2013 Most precisely measured $2\nu\beta\beta$ rate — and the lowest → slowest process ever directly measured in nature! [PRC 89, 015502 (2014)]
2014 Improved sensitivity to $m_{\beta\beta}$ [Nature 510, 229 (2014)]

$T_{1/2}^{2\nu\beta\beta} = 2.165 \pm 0.016 (\text{stat}) \pm 0.059 (\text{syst}) \times 10^{21} \text{ yr}$

$T_{1/2}^{0\nu\beta\beta} > 1.1 \times 10^{25} \text{ yr @ 90% C.L.}$
EXO-200 $(0\nu)\beta\beta$ search

2011 First measurement of $2\nu\beta\beta$ in ^{136}Xe [PRL 107, 212501 (2011)]

2012 First $0\nu\beta\beta$ result, best $m_{\beta\beta}$ limit [PRL 109, 032505 (2012)]

2013 Most precisely measured $2\nu\beta\beta$ rate — and the lowest \rightarrow slowest process ever directly measured in nature! [PRC 89, 015502 (2014)]

2014 Improved sensitivity to $m_{\beta\beta}$ [Nature 510, 229 (2014)]

$T_{1/2}^{2\nu\beta\beta} = 2.165 \pm 0.016(\text{stat}) \pm 0.059(\text{syst}) \times 10^{21} \text{ yr}$

$T_{1/2}^{0\nu\beta\beta} > 1.1 \times 10^{25} \text{ yr} @ 90\% \text{ C.L.}$
The future of EXO-200

EXO-200 is about 1.2 km from the radiation event

- **Feb. 5 2014**: Fire in WIPP underground
- **Feb. 14, 2014**: Radiation release event
- So far no radioactivity has been measured at EXO-200
- EXO clean up finished
- Low background data taking resumed in early 2016
- Stay tuned for new results
0νββ search with EXO

Multi-phase program:

- **EXO-200** – operational at WIPP mine:
 - ~175kg xenon enriched at ~80%
 - Current limit on 0νββ: 1.1 x 10^{25} years (EXO-200)
 - Continue data taking for 2 more years
 - Sensitivity: 100-200 meV

- **nEXO** - R&D underway:
 - 5T xenon enriched at ~90%
 - Sensitivity: 5-30 meV
 - Improved techniques for background suppression and possibly Ba tagging

→ Development of nEXO is well advanced

June 13, 2016
0νββ search with EXO

Multi-phase program:

- **EXO-200** – operational at WIPP mine:
 - ~175kg xenon enriched at ~80%
 - Current limit on 0νββ: 1.1 x 10^{25} years (EXO-200)
 - Continue data taking for 2 more years
 - Sensitivity: 100-200 meV

- **nEXO** - R&D underway:
 - 5T xenon enriched at ~90%
 - Sensitivity: 5-30 meV
 - Improved techniques for background suppression and possibly Ba tagging

For more information on Ba tagging:
- Y. Lan M1-4
- R. Gornea T1-5
Searching for \(0\nu\beta\beta\) with nEXO

- Next-generation neutrinoless double beta decay detector
- 5 t liquid xenon TPC similar to EXO-200 (50x the size)
- Possible location in SNOLab Cryo Pit (6010 mwe)
- SiPM for light detection
- Tiles for charge read out
- 3D event reconstruction
- Expected \(\sigma/E\) of 1% at Q-value
- Possible addition of Ba-tagging after 5 years

EXO-200 for size comparison
Searching for $0\nu\beta\beta$ with nEXO

• Next-generation neutrinoless double beta decay detector
• 5 t liquid xenon TPC similar to EXO-200 (50x the size)
• Possible location in SNOLab Cryo Pit (6010 mwe)
• SiPM for light detection
• Tiles for charge read out
• 3D event reconstruction
• Expected σ/E of 1% at Q-value
• Possible addition of Ba-tagging after 5 years
SiPM Photodetector

- Hamamatsu produces devices with QE= ~12% @ 175nm but encapsulation is too radioactive → trying to procure un-encapsulated devices
- First nEXO-specific run at FBK (Italy) provided ~10% QE [I.Ostrovskiy et al. IEEE TNS 62 (2015) 1825.]
- New FBK “RGB” devices reach 15% QE with 7.7x7.7mm2.

- Working closely with manufacturers to develop SiPMs to reach >15% QE at 175nm
- Radioassay of SiPMs to determine radioactivity
- Development of integration of 1x1cm2 SiPMs into 10x10cm2 tiles
- Tests in liquid Xe planned
SiPM Photodetector

- Hamamatsu produces devices with QE= ~12% @ 175nm but encapsulation is too radioactive → trying to procure un-encapsulated devices

- First nEXO-specific run at FBK (Italy) provided ~10% QE [I.Ostrovskiy et al. IEEE TNS 62 (2015) 1825.]

- New FBK “RGB” devices reach 15% QE with 7.7x7.7mm2.

- Working closely with manufacturers to develop SiPMs to reach >15% QE at 175nm

 - Radioassay of SiPMs to determine radioactivity

 - Development of integration of 1x1cm2 SiPMs into 10x10cm2 tiles

 - Tests in liquid Xe planned

For more information on SiPM:
- F. Retiere W2-4

June 13, 2016

Thomas Brunner
Charge Readout Tiles

- EXO-200 used wires for charge-readout
- Produced by IHEP/IME; functional testing in LXe in the US.
- 10 x 10cm² Prototype Tile
- Metallized strips on fused silica substrate
- 60 orthogonal channels (30 x 30)
- 3mm strip pitch
- Strip intersections isolated with SiO₂ layer
- Currently testing in LXe with a ²⁰⁷Bi source

Preliminary tests at Stanford in small LXe test cell

MC scaled to match 570-keV peak height

Data
MC Smearing Energy Dependent

IHEP/IME tile anode, mounted to underside of cell lid

Low capacitance crossing

10µm

10cm
• EXO-200 is operational and taking low background data
• nEXO is the next generation $0\nu\beta\beta$ experiment with 5 T isotopically enriched LXe
• nEXO expands on the success of EXO-200 and improves performance via R&D efforts
• nEXO will have many handles on background
• nEXO has discovery potential in Inverted Hierarchy pushing the lower bound of $<m_{\beta\beta}>$
• The 10meV region is within reach
• Strong Canadian contribution to EXO-200 and nEXO
The nEXO Collaboration

University of Alabama, Tuscaloosa AL, USA — T Didberidze, M Hughes, A Piepke, R Tsang
University of Bern, Switzerland — J-L Vuilleumier
Brookhaven National Laboratory, Upton NY, USA — M Chiu, G De Geronimo, S Li, V Radeka, T Rao, G Smith, T Tsang, B Yu
California Institute of Technology, Pasadena CA, USA — P Vogel
Carleton University, Ottawa ON, Canada — I Badhrees, Y Baribeau, M Bowcock, M Dunford, M Facina, R Gornea, K Graham, P Gravelle, R Killick, T Koffas, C Licciardi, K McFarlane, R Schnarr, D Sinclair
Colorado State University, Fort Collins CO, USA — C Chambers, A Craycraft, W Fairbank Jr, T Walton
Drexel University, Philadelphia PA, USA — E Callaghan, MJ Dolinski, YH Lin, E Smith, Y-R Yen
Duke University, Durham NC, USA — PS Barbeau, G Swift
University of Erlangen-Nuremberg, Erlangen, Germany — G Anton, R Bayerlein, J Hoessl, P Hufschmidt, A Jamil, T Michel, T Ziegler
IBS Center for Underground Physics, Daejeon, South Korea — DS Leonard
IHEP Beijing, People’s Republic of China — G Cao, W Cen, X Jiang, H Li, Z Ning, X Sun, T Tolba, W Wei, L Wen, W Wu, J Zhao
ITEP Moscow, Russia — V Belov, A Burenkov, A Karelina, A Kobyakin, A Kuchenkov, V Stekhanov, O Zeldovich
University of Illinois, Urbana-Champaign IL, USA — D Beck, M Coon, S Li, L Yang
Indiana University, Bloomington IN, USA — JB Albert, S Daugherty, TN Johnson, LJ Kaufman, G Visser, J Zettlemoyer
University of California, Irvine, Irvine CA, USA — M Moe
Laurentian University, Sudbury ON, Canada — B Cleveland, A Der Mesrobian-Kabakian, J Farine, U Wichoski
Lawrence Livermore National Laboratory, Livermore CA, USA — O Alford, J Brodsky, M Heffner, G Holtmeier, A House, M Johnson, S Sangiorgio
University of Massachusetts, Amherst MA, USA — S Feyzbakhsh, S Johnston, M Negus, A Pocar
McGill University, Montreal QC, Canada — T Brunner, K Murray
Oak Ridge National Laboratory, Oak Ridge TN, USA — LF Fabris, D Hornback, RJ Newby, K Ziock
Pacific Northwest National Laboratory, Richland, WA, USA — EW Hoppe, JL Orrell
Rensselaer Polytechnic Institute, Troy NY, USA — E Brown, K Odgers
Université de Sherbrooke — S Charlebois, D Danovitch, R Fontaine, JP Pratte, J Sylvestre
SLAC National Accelerator Laboratory, Menlo Park CA, USA — J Dalmasson, T Daniels, S Delaquis, G Haller, R Herbst, M Kwiatkowski, A Odian, M Oriunno, B Mong, PC Rowson, K Skarpaas
University of South Dakota, Vermillion SD, USA — J Daughhetee, R MacLellan
Stanford University, Stanford CA, USA — R DeVoe, D Fudenberg, G Gratta, M Jewell, S Kravitz, D Moore, I Ostrovskiy, A Schubert, M Weber
Stony Brook University, SUNY, Stony Brook, NY, USA — K Kumar, O Njoya, M Tarka
Technical University of Munich, Garching, Germany — P Fierlinger, M Marino
TRIUMF, Vancouver BC, Canada — J Dilling, P Gumplinger, R Krücken, Y. Lan, F Retière, V Strickland
Thanks to my Canadian collaborators:

Carleton University

McGill University

Université de Sherbrooke

TRIUMF
Backup
nEXO - Homogeneity is Crucial

- Increased mass
- Taking full advantage of self shielding
 - more effective
- Improve Compton tag efficiency by double-hit recognition

<table>
<thead>
<tr>
<th>LXe mass (kg)</th>
<th>Diameter or length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
<td>130</td>
</tr>
<tr>
<td>150</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
</tr>
</tbody>
</table>

→ Benefits of monolithic detector compared to segmented detectors
Physics searches with EXO-200

An Optimal Energy Estimator to Reduce Correlated Noise for the EXO-200 Light Readout
C.G. Davis et al. Submitted to JINST (May 2016). arxiv:1605.06552 [physics.ins-det]

Cosmogenic Backgrounds to 0νββ in EXO-200

First Search for Lorentz and CPT Violation in Double Beta Decay with EXO-200
J.B. Albert et al., Phys. Rev. D 93, 072001

Search for 2νββ decay of 136Xe to the 01+ excited state of 136Ba with EXO-200
J.B. Albert et al., Phys. Rev. C 93, 035501

Measurements of the ion fraction and mobility of alpha and beta decay products in liquid xenon using EXO-200

Investigation of radioactivity-induced backgrounds in EXO-200

Search for Majoron-emitting modes of double-beta decay of 136Xe with EXO-200

Search for Majorana neutrinos with the first two years of EXO-200 data

An improved measurement of the 2νββ half-life of Xe-136 with EXO-200

Search for Neutrinoless Double-Beta Decay in 136Xe with EXO-200

Observation of Two-Neutrino Double-Beta Decay in Xe-136 with EXO-200
EXO-200 0νββ search

2011 First measurement of 2νββ in 136Xe [PRL 107, 212501 (2011)]

2012 First 0νββ result, best $m_{\beta\beta}$ limit [PRL 109, 032505 (2012)]

2013 Most precisely measured 2νββ rate — and the lowest
 → slowest process ever directly measured in nature! [PRC 89, 015502 (2014)]

2014 Improved sensitivity to $m_{\beta\beta}$ [Nature 510, 229 (2014)]

NMEs used:

<table>
<thead>
<tr>
<th>Model</th>
<th>$M_{0\nu}$</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDF</td>
<td>4.20</td>
<td>PRL 105, 252503 (2010)</td>
</tr>
<tr>
<td>ISM</td>
<td>2.19</td>
<td>Nucl Phys A 818, 139 (2009)</td>
</tr>
<tr>
<td>IBM-2</td>
<td>3.05</td>
<td>PRC 91, 034304 (2015)</td>
</tr>
<tr>
<td>SkyrmeQRPA</td>
<td>1.55</td>
<td>PRC 87 064302 (2013)</td>
</tr>
<tr>
<td>QRPA</td>
<td>2.02</td>
<td>PRC 89, 064308 (2014)</td>
</tr>
</tbody>
</table>

June 13, 2016 Thomas Brunner
Good energy resolution requires efficient readout of the scintillation light to be combined with the ionization signal.

EXO-200 reaches 1.4% at $Q_{\beta\beta}$

Better than 1% resolution required for nEXO
The role of the standoff distance in background identification and suppression

Example: nEXO, 5 yr data, 0νββ @ $T_{1/2} = 6.6 \times 10^{27}$ yr, projected backgrounds from subsets of the total volume

<table>
<thead>
<tr>
<th>Fid. LXe Mass</th>
<th>4780kg</th>
<th>3000kg</th>
<th>1000kg</th>
<th>500kg</th>
</tr>
</thead>
</table>

SS

MS

The fit gets to see all this information and use it in the optimal way

June 13, 2016

Thomas Brunner