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CHAMP1

1http://op.gfz-potsdam.de/champ/systems/main SYSTEMS.html



Ionospheric

electron

temperature

Outline

Te anisotropy

Numerical

approach

Results

Summary

Mission

• In orbit from July 15, 2000 until September 19, 2010

• Map Earth magnetic and gravitational fields.

• Atmospheric research

• Monitor ionospheric plasma parameters: ne , Te .
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Problem: Electron

temperature anisotropy2

2Radio Science, VOL. 45, RS6020, doi:10.1029/2010RS004445, 2010
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Hypothesis

N

S

The distribution function of collected electrons depend on
whether or not the Planar Langmuir Probe (PLP) is
“magnetically connected” with other upstream satellite
components.
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Numerical approach - PTetra1

• Fully kinetic PIC with physical charges and masses.

• Explicit, electrostatic.

• Unstructured adaptive tetrahedral mesh.

• Arbitrary distribution functions of background particles.

• Photoelectron and secondary electron emission.

• Optional biasing of selected satellite components.

• Null collision model of charge exchange collisions.

• Single-processor and multi-processor (MPI) versions.

• 1st order perturbed magnetic fields.

• Extended to account for electrons or ions injection:
• from any number of satellite components,
• with arbitrary particle distribution functions.

1Marchand, IEEE Trans. Plasma Sci., Vol. 40, 2012
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Geometry and simulation

parameters

X
Y

Z

Plasm
a

veloc
ity

ne = ni 1010 m−3

Te = Ti 0.1 eV
ion species 100% H

+

~B (36.6, 0, ± 8.56) µT
electron plasma frequency 5.64× 106s−1

electron thermal Larmor radius ρe 2.84 cm
ion thermal Larmor radius ρi 1.21 m
electron Debye length λDe 2.35 cm
plasma ram velocity ~vr (7673, 0, 0) m/s
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ne at steady state

PLP not magnetically
connected with the
boom.

PLP magnetically
connected with the
boom.

Computed with Vbias = 1 V.
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Steady state with V = 1. V

φ and ne With magnetic connection

φ and ne Without magnetic connection
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Computed characteristics
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Fit

An approximate equation for the PLP characteristic was
derived by Ruther, et al.3

IP = −enevorbitAP





AP

ASe
+ ASi

ASe

AP

ASe
+ e

−

eV

kTe

− 1



 , (1)

where

• e is the elementary charge,

• AP is the probe area,

• ASe and ASi are respectively the effective satellite electron
and ion collection areas (excluding PLP),

• vorbit is the satellite orbital speed.

3Radio Science, VOL. 45, RS6020, doi:10.1029/2010RS004445, 2010
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Monte Carlo fit

• Equation 1 is an equation for IP vs. V depending
nonlinearly on four adjustable parameters α1−4.
α1 = enevorbitAP µA
α2 = (AP + ASi )/ASe

α3 = AP/ASe

α4 = Te (eV)

• An absolute minimum is found with a straightforward
Monte Carlo minimization of the square difference
between the analytic and computed characteristics:
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Fitted characteristics
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IP = −enevorbitAP

[

AP

ASe
+

ASi

ASe

AP

ASe
+e

−

eV
kTe

− 1

]

α1−4\Bz 8.56µT −8.56µT
disconnected connected

α1 = enevorbitAP µA 0.2976 0.3112
α2 = (AP + ASi )/ASe 0.3433 0.2230
α3 = ASi/ASe 0.02671 0.01908
α4 = Te (eV) 0.1187 0.1060
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Comparison with observation

N

S

• In the northern hemisphere,
northbound - southbound ⇔ disconnected - connected,
⇒ ∆Te ≃ 0.013 eV ≃ 150 K.

• This agrees qualitatively with observation at mid-latitudes.

• Quantitative agreement is also found within a factor
∼ 2− 3.
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Summary

• Kinetic simulations were made to understand observed
mid-latitude electron temperature northbound and
southbound legs of the CHAMP orbit.

• ”Magnetic connection” of the Planar Langmuir Probe
(PLP) with other satellite components affects computed
characteristics, and inferred temperatures.

• Differences between northbound and southbound inferred
temperatures agree qualitatively with observation.

• Quantitatively computed differences compare with
observation within a factor ∼ 2− 3.

Caveat:

• The anisotropy reverses in polar regions where ~B is nearly
vertical.

• This could be due to physical processes not included in the
simulations, such as incident energetic particle beams, non
Maxwellian electron distributions.
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