Helium-3 thermal neutron detectors the Belle II commissioning detector for 2016 CAP congress

Samuel de Jong, Michael Roney, Paul Poffenburger, Neil Honkanen

Department of Physics and Astronomy
University of Victoria

June 13, 2016
The Belle II project consists of the SuperKEKB accelerator and the Belle II detector.
The Belle II project consists of the SuperKEKB accelerator and the Belle II detector.

The experiment will have a center of mass energy of 11GeV, just enough to produce B-antiB meson pairs.
The Belle II project consists of the SuperKEKB accelerator and the Belle II detector.

The experiment will have a center of mass energy of 11GeV, just enough to produce B-antiB meson pairs.

This ‘B-factory’ provides a method of studying the physics of b-quarks and their mesons allowing study of (among other things):
The Belle II project consists of the SuperKEKB accelerator and the Belle II detector.

The experiment will have a center of mass energy of 11 GeV, just enough to produce B-antiB meson pairs.

This ‘B-factory’ provides a method of studying the physics of b-quarks and their mesons allowing study of (among other things):

- CP violation
The Belle II project consists of the SuperKEKB accelerator and the Belle II detector.

The experiment will have a center of mass energy of 11GeV, just enough to produce B-antiB meson pairs.

This ‘B-factory’ provides a method of studying the physics of b-quarks and their mesons allowing study of (among other things):

- CP violation
- Precision measurements that may show deviations from the standard model.
The Belle II project consists of the SuperKEKB accelerator and the Belle II detector.

The experiment will have a center of mass energy of 11GeV, just enough to produce B-antiB meson pairs.

This ‘B-factory’ provides a method of studying the physics of b-quarks and their mesons allowing study of (among other things):

- CP violation
- Precision measurements that may show deviations from the standard model.
- Rare or forbidden (by the standard model) decays.
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Beam size studies</th>
<th>Vacuum Bump</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

Belle II

Samuel de Jong
University of Victoria

Helium-3 thermal neutron detectors the Belle II commissioning detector
Belle II

Helium-3 thermal neutron detectors the Belle II commissioning detector
Samuel de Jong
University of Victoria

Helium-3 thermal neutron detectors the Belle II commissioning detector
SuperKEKB is an asymmetric e+e- collider located at the KEK physics laboratory in Tsukuba, Japan.
SuperKEKB is an asymmetric e+e-collider located at the KEK physics laboratory in Tsukuba, Japan. The high energy ring (HER) accelerates electrons to an energy of 7GeV, and the low energy ring (LER) accelerates positrons to an energy of 4GeV.
SuperKEKB is an asymmetric e+e-collider located at the KEK physics laboratory in Tsukuba, Japan.

The high energy ring (HER) accelerates electrons to an energy of 7GeV, and the low energy ring (LER) accelerates positrons to an energy of 4GeV.

SuperKEKB aims to achieve a luminosity of $80 \times 10^{34} \text{cm}^{-2}\text{s}^{-1}$, more than 40 times the luminosity of its predecessor, KEKB.
Due to the high luminosity of SuperKEKB, it is important to understand the beam backgrounds in order to prevent damage to the Belle II detector.
Due to the high luminosity of SuperKEKB, it is important to understand the beam backgrounds in order to prevent damage to the Belle II detector.

Simulations of these beam backgrounds have been done but it is necessary to actually measure them, to test the accuracy of the simulations.
Due to the high luminosity of SuperKEKB, it is important to understand the beam backgrounds in order to prevent damage to the Belle II detector.

Simulations of these beam backgrounds have been done but it is necessary to actually measure them, to test the accuracy of the simulations.

This is the purpose of the BEAST - a series of small detectors placed at the interaction region before Belle II is wheeled in.
Due to the high luminosity of SuperKEKB, it is important to understand the beam backgrounds in order to prevent damage to the Belle II detector.

Simulations of these beam backgrounds have been done but it is necessary to actually measure them, to test the accuracy of the simulations.

This is the purpose of the BEAST - a series of small detectors placed at the interaction region before Belle II is wheeled in.

These detectors are used to measure the beam backgrounds for comparison with simulations.
Due to the high luminosity of SuperKEKB, it is important to understand the beam backgrounds in order to prevent damage to the Belle II detector.

Simulations of these beam backgrounds have been done but it is necessary to actually measure them, to test the accuracy of the simulations.

This is the purpose of the BEAST - a series of small detectors placed at the interaction region before Belle II is wheeled in.

These detectors are used to measure the beam backgrounds for comparison with simulations.

Two important beam background sources are:
Due to the high luminosity of SuperKEKB, it is important to understand the beam backgrounds in order to prevent damage to the Belle II detector.

Simulations of these beam backgrounds have been done but it is necessary to actually measure them, to test the accuracy of the simulations.

This is the purpose of the BEAST - a series of small detectors placed at the interaction region before Belle II is wheeled in.

These detectors are used to measure the beam backgrounds for comparison with simulations.

Two important beam background sources are:

- Beam-Gas - beam particles interact with an atom of gas in the beam pipe and are scattered into the detector.
Due to the high luminosity of SuperKEKB, it is important to understand the beam backgrounds in order to prevent damage to the Belle II detector.

Simulations of these beam backgrounds have been done but it is necessary to actually measure them, to test the accuracy of the simulations.

This is the purpose of the BEAST - a series of small detectors placed at the interaction region before Belle II is wheeled in.

These detectors are used to measure the beam backgrounds for comparison with simulations.

Two important beam background sources are:
- Beam-Gas - beam particles interact with an atom of gas in the beam pipe and are scattered into the detector.
- Beam-beam or Touschek - beam particles interact with other beam particles and are deflected out of the beam.
Helium-3 tubes

- One of UVic’s contributions to BEAST II is the thermal neutron detectors.
BEAST II

Helium-3 tubes

- One of UVic’s contributions to BEAST II is the thermal neutron detectors.
- The thermal neutron detectors are stainless steel tubes, 8" long and 2" in diameter with a sense wire at the center.
One of UVic’s contributions to BEAST II is the thermal neutron detectors.

The thermal neutron detectors are stainless steel tubes, 8" long and 2" in diameter with a sense wire at the center.

They are filled with 4atm of 3He and a small amount of CO$_2$.
Helium-3 tubes

- One of UVic’s contributions to BEAST II is the thermal neutron detectors.
- The thermal neutron detectors are stainless steel tubes, 8" long and 2" in diameter with a sense wire at the center.
- They are filled with 4atm of 3He and a small amount of CO$_2$.
- The amplifier system was designed and built by UVic’s electronics office.
Helium-3 tubes

When a thermal neutron interacts with an atom of 3He, a proton and a tritium are created:

$$\frac{3}{2}He + ^0_1n \rightarrow ^3_1H + ^1_1H + 760\text{MeV}$$

From GEANT4. Neutron starts at center of tube.
When a thermal neutron interacts with an atom of ^3He, a proton and a tritium are created:

$$^2\text{He} + _0^1\text{n} \rightarrow _1^3\text{H} + _1^1\text{H} + 760\text{MeV}$$

The tritium and proton ionize the ^3He which produces a signal on the sense wire.

From GEANT4. Neutron starts at center of tube.
Helium-3 tubes

- When a thermal neutron interacts with an atom of 3He, a proton and a tritium are created:
 \[^2\text{He} + ^1\text{n} \rightarrow ^3\text{H} + ^1\text{H} + 760\text{MeV} \]
- The tritium and proton ionize the 3He which produces a signal on the sense wire.
- The cross section of this reaction falls rapidly as a function of the neutron’s momentum.

From GEANT4. Neutron starts at center of tube.
There are four Helium-3 tubes deployed in BEAST II.
There are four Helium-3 tubes deployed in BEAST II.

They have been placed surrounding the IR, at approximate phi locations (from the perspective of one looking in the LER direction):
Helium-3 tubes

- There are four Helium-3 tubes deployed in BEAST II.
- They have been placed surrounding the IR, at approximate phi locations (from the perspective of one looking in the LER direction):
 - $\phi=0$ (to the right)
There are four Helium-3 tubes deployed in BEAST II.

They have been placed surrounding the IR, at approximate phi locations (from the perspective of one looking in the LER direction):

- $\phi=0$ (to the right)
- $\phi=90$ (above the beam pipe)
Helium-3 tubes

- There are four Helium-3 tubes deployed in BEAST II.
- They have been placed surrounding the IR, at approximate phi locations (from the perspective of one looking in the LER direction):
 - $\phi=0$ (to the right)
 - $\phi=90$ (above the beam pipe)
 - $\phi=180$ (to the left)
There are four Helium-3 tubes deployed in BEAST II.

They have been placed surrounding the IR, at approximate phi locations (from the perspective of one looking in the LER direction):

- $\phi=0$ (to the right)
- $\phi=90$ (above the beam pipe)
- $\phi=180$ (to the left)
- $\phi=270$ (below the beam pipe)
In May 2016, BEAST II machine studies were conducted at KEK.
In May 2016, BEAST II machine studies were conducted at KEK.

During these studies, various beam parameters in the HER and LER were varied to see the effect on the subsystems of BEAST.
In May 2016, BEAST II machine studies were conducted at KEK.

During these studies, various beam parameters in the HER and LER were varied to see the effect on the subsystems of BEAST.

The goal of these studies was to seek evidence of Touschek and beam gas beam backgrounds, and determine how large an effect they had.
In May 2016, BEAST II machine studies were conducted at KEK.

During these studies, various beam parameters in the HER and LER were varied to see the effect on the subsystems of BEAST.

The goal of these studies was to seek evidence of Touschek and beam gas beam backgrounds, and determine how large an effect they had.

The ultimate goal is to compare these results with simulation in order to verify the accuracy of the simulation.
Beam size studies

- Touschek beam losses are proportional to the inverse of the beam size.

When the beam size is infinite, there is no Touschek contribution. By plotting the rate in the helium-3 tubes vs the inverse of the beam size, it is possible to calculate the Touschek contribution for a given beam size and beam current.
Beam size studies

- Touschek beam losses are proportional to the inverse of the beam size.
- When the beam size is infinite, there is no Touschek contribution.
Touschek beam losses are proportional to the inverse of the beam size.

When the beam size is infinite, there is no Touschek contribution.

By plotting the rate in the helium-3 tubes vs the inverse of the beam size, it is possible to calculate the Touschek contribution for a given beam size and beam current.
Low energy ring

LER beam size study

There is clear evidence of the Touschek effect.

As the beam size decreases, the rate clearly increases.
There is clear evidence of the Touschek effect.

As the beam size decreases, the rate clearly increases.
LER beam size study

There is clear evidence of the Touschek effect.

As the beam size decreases, the rate clearly increases.
LER beam size study - conclusions

- Plotted here is $\text{Touschek}/(\text{Touschek} + \text{Other})$ at a beam size of $90\mu m$ calculated using fit information.
LER beam size study - conclusions

- Plotted here is $\frac{\text{Touschek}}{(\text{Touschek}+\text{Other})}$ at a beam size of $90 \mu m$ calculated using fit information.
LER beam size study - conclusions

- Plotted here is Touschek/(Touschek+Other) at a beam size of 90\(\mu\)m calculated using fit information.
- Touschek contribution in LER appears to be constant at about 60%.
The HER beam is older, and better vacuum scrubbed, and produces a lower rate in the tubes.
The HER beam is older, and better vacuum scrubbed, and produces a lower rate in the tubes.

Thus, the statistics are poor for the HER runs.
HER beam size study

- The HER beam is older, and better vacuum scrubbed, and produces a lower rate in the tubes.
- Thus, the statistics are poor for the HER runs.
- This is reflected in the quality of the fits.
HER beam size study

- The HER beam is older, and better vacuum scrubbed, and produces a lower rate in the tubes.
- Thus, the statistics are poor for the HER runs.
- This is reflected in the quality of the fits.
If we believe the fit data, there is clear evidence of Touschek.

The Touschek contribution is about 5-20%
During the vacuum bump studies, the pressure was in the beam pipe was increased at several locations.
During the vacuum bump studies, the pressure was in the beam pipe was increased at several locations.

This was achieved by heating up the vacuum pumps at these locations.
During the vacuum bump studies, the pressure was in the beam pipe was increased at several locations.

This was achieved by heating up the vacuum pumps at these locations.

There are two types of beam gas interaction: Coulomb scattering and bremsstrahlung:
During the vacuum bump studies, the pressure was in the beam pipe was increased at several locations.

This was achieved by heating up the vacuum pumps at these locations.

There are two types of beam gas interaction: Coulomb scattering and bremsstrahlung:

- Coulomb scattering: beam particles deflect off atoms of gas in the beam pipe have no angular dependence.
During the vacuum bump studies, the pressure was in the beam pipe was increased at several locations.

This was achieved by heating up the vacuum pumps at these locations.

There are two types of beam gas interaction: Coulomb scattering and bremsstrahlung:

- Coulomb scattering: beam particles deflect off atoms of gas in the beam pipe have no angular dependence.
- Bremsstrahlung: beam particles are slowed down by gas atoms has an angular dependence.
During the vacuum bump studies, the pressure was in the beam pipe was increased at several locations.

This was achieved by heating up the vacuum pumps at these locations.

There are two types of beam gas interaction: Coulomb scattering and bremsstrahlung:

- Coulomb scattering: beam particles deflect off atoms of gas in the beam pipe have no angular dependence.
- Bremsstrahlung: beam particles are slowed down by gas atoms has an angular dependence.

To make any angular effect more pronounced, the rate in each tube was divided by the average rate in that tube for that run.
Vacuum bump occurred at several different locations along the LER beam:
Vacuum bump occurred at several different locations along the LER beam:
- D02: L25, L26
Vacuum bump occurred at several different locations along the LER beam:

- D02: L25, L26
- D02: L23, L24
Vacuum bump occurred at several different locations along the LER beam:
- D02: L25, L26
- D02: L23, L24
- D02: L20, L21, L22
Vacuum bump occurred at several different locations along the LER beam:

- D02: L25, L26
- D02: L23, L24
- D02: L20, L21, L22
- D02: L18, L19, L20
Vacuum bump occurred at several different locations along the LER beam:
- D02: L25, L26
- D02: L23, L24
- D02: L20, L21, L22
- D02: L18, L19, L20
- D04, D05
- Vacuum bump occurred at several different locations along the LER beam:
 - D02: L25, L26
 - D02: L23, L24
 - D02: L20, L21, L22
 - D02: L18, L19, L20
 - D04, D05
 - D07
Vacuum bump occurred at several different locations along the LER beam:

- D02: L25, L26
- D02: L23, L24
- D02: L20, L21, L22
- D02: L18, L19, L20
- D04, D05
- D07
- D10, D11
LER Vacuum bump in D02 L25 & L26, started at 2016-05-23 10:28:00
LER Vacuum bump in D02 L25 & L26, started at 2016-05-23 10:28:00

LER Vacuum bump in D02 L23 & L24, started at 2016-05-23 11:30:00
LER Vacuum bump in D02 L25 & L26, started at 2016-05-23 10:28:00

LER Vacuum bump in D02 L23 & L24, started at 2016-05-23 11:30:00

LER Vacuum bump in D02 L20, L21 & L22, started at 2016-05-23 12:36:00
LER Vacuum bump in D02 L25 & L26, started at 2016-05-23 10:28:00

LER Vacuum bump in D02 L23 & L24, started at 2016-05-23 11:30:00

LER Vacuum bump in D02 L20, L21 & L22, started at 2016-05-23 12:36:00

LER Vacuum bump in D02 L18, L19 & L20, started at 2016-05-23 13:55:00

Samuel de Jong University of Victoria

Helium-3 thermal neutron detectors the Belle II commissioning detector
LER Vacuum bump in D02 L25 & L26, started at 2016-05-23 10:28:00

LER Vacuum bump in D02 L23 & L24, started at 2016-05-23 11:30:00

LER Vacuum bump in D02 L20, L21 & L22, started at 2016-05-23 12:36:00

LER Vacuum bump in D02 L18, L19 & L20, started at 2016-05-23 13:55:00

LER Vacuum bump in D04 & D05, started at 2016-05-23 15:25:00
LER Vacuum bump in D02 L25 & L26, started at 2016-05-23 10:28:00

LER Vacuum bump in D02 L23 & L24, started at 2016-05-23 11:30:00

LER Vacuum bump in D02 L20, L21 & L22, started at 2016-05-23 12:36:00

LER Vacuum bump in D02 L18, L19 & L20, started at 2016-05-23 13:55:00

LER Vacuum bump in D04 & D05, started at 2016-05-23 15:25:00

LER Vacuum bump in in D07 L00, L01 & L02, started at 2016-05-23 16:50:00

LER Vacuum bump in D07 L00, L01 & L02, started at 2016-05-23 16:50:00
LER Vacuum bump in D02 L25 & L26, started at 2016-05-23 10:28:00

LER Vacuum bump in D02 L23 & L24, started at 2016-05-23 11:30:00

LER Vacuum bump in D02 L20, L21 & L22, started at 2016-05-23 12:36:00

LER Vacuum bump in D02 L18, L19 & L20, started at 2016-05-23 13:55:00

LER Vacuum bump in D04 & D05, started at 2016-05-23 15:25:00

LER Vacuum bump in D07 L00, L01 & L02, started at 2016-05-23 16:50:00

LER Vacuum bump in D10 & D11, started at 2016-05-23 17:40:00

Samuel de Jong

University of Victoria

Helium-3 thermal neutron detectors the Belle II commissioning detector
LER vacuum bump - Conclusions

- Pressure increases in D02 have a large impact on the helium-3 tube rate.
- The impact decreases as the pressure bump was moved along D02 away from the IR.
- Pressure bumps at locations further down the beam pipe have little to no effect on the helium-3 tube rate.
- No obvious dependence on ϕ observed in the LER.
HER vacuum bump

- Vacuum bump occurred at several different locations along the HER beam:
Vacuum bump occurred at several different locations along the HER beam:

- D12
HER vacuum bump

Vacuum bump occurred at several different locations along the HER beam:
- D12
- D09
Vacuum bump occurred at several different locations along the HER beam:
- D12
- D09
- D07
Vacuum bump occurred at several different locations along the HER beam:

- D12
- D09
- D07
- D06
Vacuum bump occurred at several different locations along the HER beam:

- D12
- D09
- D07
- D06
- D05
Vacuum bump occurred at several different locations along the HER beam:

- D12
- D09
- D07
- D06
- D05
- D03
HER Vacuum Bump in D12, started at 2016-05-24 11:00:00
High energy ring

HER Vacuum Bump in D12, started at 2016-05-24 11:00:00

HER Vacuum Bump in D09, started at 2016-05-24 12:10:00
HER Vacuum Bump in D12, started at 2016-05-24 11:00:00

HER Vacuum Bump in D09, started at 2016-05-24 12:10:00

HER Vacuum Bump in D07, started at 2016-05-24 13:00:00
HER Vacuum Bump in D12, started at 2016-05-24 11:00:00
HER Vacuum Bump in D09, started at 2016-05-24 12:10:00
HER Vacuum Bump in D07, started at 2016-05-24 13:00:00
HER Vacuum Bump in D06, started at 2016-05-24 15:35:00

\[\text{He} \text{tube Rate} / \text{Mean(He} \text{tube Rate) \times \phi} \]
\[\phi = 90 \]
\[\phi = 180 \]
\[\phi = 270 \]
HER Vacuum Bump in D12, started at 2016-05-24 11:00:00

HER Vacuum Bump in D09, started at 2016-05-24 12:10:00

HER Vacuum Bump in D07, started at 2016-05-24 13:00:00

HER Vacuum Bump in D06, started at 2016-05-24 15:35:00

HER Vacuum Bump in D05, started at 2016-05-24 17:05:00
High energy ring

HER Vacuum Bump in D12, started at 2016-05-24 11:00:00
HER Vacuum Bump in D09, started at 2016-05-24 12:10:00
HER Vacuum Bump in D07, started at 2016-05-24 13:00:00
HER Vacuum Bump in D06, started at 2016-05-24 15:35:00
HER Vacuum Bump in D05, started at 2016-05-24 17:05:00
HER Vacuum Bump in D03, started at 2016-05-24 17:35:00
Unlike the LER, pressure increases at any location cause an increase in the helium-3 tube rate.

As stated before, the HER beam is ‘cleaner’, and has a lower nominal pressure, so it is more sensitive to pressure increases.

Not dependence on ϕ observed.
Compare these results with simulation in order to assess the accuracy of the simulation.
Future work

- Compare these results with simulation in order to assess the accuracy of the simulation.
- Prepare Helium-3 tubes for phase 2 of BEAST.
Clear evidence of Touschek effect seen in the LER beam.
- Clear evidence of Touschek effect seen in the LER beam.
- Weaker evidence in the HER beam.
Clear evidence of Touschek effect seen in the LER beam.
Weaker evidence in the HER beam.
Coulomb beam gas seen in both beams.
Clear evidence of Touschek effect seen in the LER beam.

Weaker evidence in the HER beam.

Coulomb beam gas seen in both beams.

No evidence of bremsstrahlung radiation.
Special thanks to:

- Paul Poffenburger at UVic for advice on DAQ.
- Neil Honkanen at UVic’s machine shop for designing and building the amplifier system.
- Peter Lewis at the University of Hawaii for coordinating the BEAST II DAQ work.
- Hiroyuki Nakayama at KEK for coordinating with the accelerator folks.
- The accelerator control group at KEK for the nice, stable beams.