12–17 Jun 2016
University of Ottawa
America/Toronto timezone
Welcome to the 2016 CAP Congress! / Bienvenue au congrès de l'ACP 2016!

The Promise of Quantum Nonlinear Optics

14 Jun 2016, 17:00
30m
SITE G0103 (University of Ottawa)

SITE G0103

University of Ottawa

SITE Building, 800 King Edward Ave, Ottawa, ON
Invited Speaker / Conférencier invité Division of Atomic, Molecular and Optical Physics, Canada / Division de la physique atomique, moléculaire et photonique, Canada (DAMOPC-DPAMPC) T3-3 Quantum Computing and Coherent Control (DAMOPC) / Calcul quantique et contrôle cohérent (DPAMPC)

Speaker

Robert Boyd (University of Ottawa)

Description

This presentation first reviews the historical development of the field of nonlinear optics, starting from its inception in 1961. It then reviews some of its more recent developments, including especially how nonlinear optics has become a crucial tool for the developing field of quantum technologies. Fundamental quantum processes enabled by nonlinear optics, such as the creation of squeezed and entangled light states, are reviewed. We then illustrate these concepts by means of specific applications, such as the development of secure communication systems based on the quantum states of light in the form of states that carry orbital angular momentum. Light can carry angular momentum both by means of its spin angular momentum (as manifested for example in circular polarization) and by means of its orbital angular momentum (OAM), whose origin is a helical structure of its wavefront. The orbital angular momentum of light has recently been recognized to constitute a crucial attribute for many photonic technologies, including the trapping and manipulation of small particles and for multiplexing in optical telecommunication. In this presentation we review some of the fundamental properties of OAM including its quantum features such as entanglement. We then go on to describe a secure telecommunication system in which information is encoded in OAM, and which can carry more than one bit of information per photon.

Primary author

Robert Boyd (University of Ottawa)

Presentation materials

There are no materials yet.