Coarse-grained simulations of highly driven DNA translocation from a confining nanotube

David Sean, Gary W. Slater

University of Ottawa, Canada
DNA Translocation

Nanopore

ions

Electric Field

cis-side

trans-side

membrane

$\frac{t}{\text{length}}$

Coarse-graining

atomistic
\(N = (a \text{ lot!}) \)

coarse-grained
\(N = 100 \text{ beads} \)

Coarse-graining

Finitely Extensible Nonlinear Elastic

\[U_{\text{FENE}}(r) = -\frac{1}{2} k_{\text{FENE}} r_0^2 \ln \left[1 - \frac{r^2}{r_0^2} \right] \]

truncated Lennard-Jones

\[U_{\text{LJ}}(r) = \begin{cases}
4\epsilon \left[(\frac{\sigma}{r})^{12} - (\frac{\sigma}{r})^6 \right] + \epsilon & \text{for } r < r_c \\
0 & \text{for } r \geq r_c
\end{cases} \]

\[\langle F_B^2 \rangle = \frac{2\zeta k_B T}{\Delta t} \quad \text{random Brownian force} \]

\[m\ddot{\mathbf{r}} = \mathbf{F}^C - \zeta \dot{\mathbf{r}} + \mathbf{F}^B \]

Putting it all Together

short-ranged repulsive membrane:

\[U_{\text{LJ}}(r) = \begin{cases}
4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] + \varepsilon & \text{for } r < r_c \\
0 & \text{for } r \geq r_c
\end{cases} \]

field in the pore:

\[F_{\text{drive}} = 50 \left[\frac{k_BT}{\sigma} \right] \]

Highly-Driven limit!

N=100 beads

Problems with Driven Translocation

High variance amongst events.
Two main sources for this variation:

i) thermal noise

ii) initial conformations

![Graph showing translocation time distribution with counts for typical and fancy tricks]
Initial conformations matter!
Geometric Restrictions

Use a confining tube to reduce the variance

Case 1

Case 2

semi-infinite

finite

D. Sean, G.W. Slater, (submitted to *J. Chem. Phys*)

Translocation Dynamics

semi-infinite tube

Percent Translocated

Time: \(t \) (arb. units)

\[\xi_T = 3 \quad \xi_T = 4 \quad \xi_T = 5 \quad \xi_T = 6 \]

Reducing tube size

Tension Propagation

Net friction is determined by moving monomers

\[F_{\text{drive}} = (k - s) \zeta \nu \]

Tension Propagation
first few simulation frames
Tension Propagation
First few simulation frames
Decreasing the Variance

\[\xi_T = 2.5 \]

Recap: semi-infinite case

Use a confining tube to reduce the variance

Case 1

Results

- Reduces variance: σ_{τ}
- Increases time: τ
- Reduces coef. var: σ_{τ}/τ

- Require high confinement (free energy cost)
Confinement in a Finite-tube

Here, we have additional parameters.

Can we do better than before?

Cast into volume and aspect-ratio

\[\frac{\xi_T}{L_T} \]

\[V_T \]

\[a = \frac{L_T}{\xi_T} \]
Iso-volume, vary $a = \frac{L_T}{\xi_T}$

D. Sean, G.W. Slater, (submitted to *J. Chem. Phys.*)
Tension Propagation

\[
\tau = \frac{\zeta}{F} \sum_{k=1}^{N} R_k
\]

\[
\langle \tau \rangle = \frac{\zeta}{F} N \langle R \rangle
\]

reducing \(\sigma_R \) should reduce \(\sigma_\tau \)

Why $a^* \approx 0.5$?

Since the pore (monomer sink) is centred, $a \approx 0.5$ corresponds to an isotropic span.

$$a = \frac{L_T}{\xi_T}$$

lower variance in these R vectors
Hemisphere is the Optimal Shape

variation in distances: $\sigma_R/\langle R \rangle$

cylinder

$\alpha^* = 0.414$

$\sigma_R/\langle R \rangle = 0.277$

prism

$\alpha^* = 1/2$

$\sigma_R/\langle R \rangle = 0.289$

hemisphere

$\sigma_R/\langle R \rangle = 0.258$

D. Sean, G.W. Slater, (submitted to J. Chem. Phys)
Recap: finite case

Use a confining tube to reduce the variance

Case 2

Results

✓ Reduces variance: σ_τ

✗ Reduces time: τ

✓ Reduces coef. var: σ_τ/τ

✓ Less confining
Conclusion

- We used a geometric constraint (tube) to limit initial conformations prior to translocation.
- Reduces the variance, and the coefficient of variation.
- Semi-infinite: small radius increases the mean time.
- Finite tube: ideal aspect ratio \(a \approx 0.5 \) (hemisphere).
Thanks!

Gary W. Slater (U.Ottawa)
Maxime Ignacio
Mykyta Chubynsky
Hanyang Wang

Hendrick W. de Haan (U.O.I.T)
Average Distance in a Cavity
(if the polymer homogeneously fills the cavity)

\[\langle R \rangle = \frac{1}{v_T} \int_{\phi=0}^{2\pi} \int_{\rho=0}^{\xi_T/2} \int_{z=0}^{L_T} R \rho d\phi d\rho dz \]

\[\sigma_R^2 = \langle R^2 \rangle - \langle R \rangle^2 \]
Average Distance in a Cavity

$$a^* = 0.414$$

Theory: circular channel

Theory: square channel

Coefficient of variation: $\sigma_R/\langle R \rangle$

Aspect Ratio: $a = L_T/\xi_T$
Moderate Tube size
Reducing Volume

\[R_{g0}^3 \]

Coefficient of variation: \(\sigma_T / \langle \sigma \rangle \)

Volume: \(\pi L_T (\xi_T/2)^2 (\sigma^3) \)

\(\xi_T = 9.0 \sigma \)
\(\xi_T = 11.0 \sigma \)
\(\xi_T = 5.0 \sigma \)

D. Sean, G.W. Slater, *J. Chem. Phys* (submitted)
Knots
Non-monotonic Fluctuations

D. Sean, G.W. Slater, *J. Chem. Phys* (submitted)
Net friction is determined by moving monomers.
Slowest state?

Blob-like
occurs later
(near the end)

Hairpin
occurs earlier
(about halfway)