T2K Neutrino Oscillation Results

Blair Jamieson for the T2K Collaboration bl.jamieson@uwinnipeg.ca

CAP2016

Tokai

Overview

The T2K experiment

Latest results
u appearance / v disappearance joint fit

■ v oscillation

Future Sensitivity for CP violation Data Japan Hydrographic Association Summary and Conclusion © 2013 Cnes/Spot Image

Google earth

Neutrino Mixing

hass²

2

Neutrino flavour states are not the same as neutrino mass states

$$|\mathbf{v}_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i} |\mathbf{v}_{i}\rangle$$

Oscilla compl the PN

ations parametrised by a
lex 3x3 mixing matrix called
$$\Delta m_{atm}^2$$

MNS matrix.
$$= \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 3} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \xrightarrow{v_2} \xrightarrow{t} \sum V_1$$

Normal Hierarchy

 V_3

For physics motivation of neutrino oscillation measurements refer back to talk of R. Hill (T1-5)

Oscillations : Current Status

Pontecorvo – Maki – Nakagawa- Sakata matrix

Two flavour oscillations

Appearance Measurement

Mixing angle Mass splitting Baseline
$$P(v_{\mu} \rightarrow v_{e}) \approx \sin^{2}(2\theta_{13}) \sin^{2}(\theta_{23}) \sin^{2}(\Delta m_{31}^{2} \frac{L}{4E})$$

+ CPV terms + subleading terms

Disappearance Measurement

$$P(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\mu}) \approx 1 - \sin^2(2\theta_{23}) \sin^2(\Delta m_{32}^2 \frac{L}{4E})$$

The T2K Experiment

The T2K Beam

- ν_µ from pion decay
 Off-axis beam
- concentrates flux around oscillation maximum
 eliminates high-energy tail
 Ideal for v_e appearance
 Beam v_e present at ~1.2 %

6

Near Detectors

 On-axis detector 280 m from neutrino production point
 16 iron-scintillator tracking calorimeters in cross profile
 1 scintillator-only "proton module"

Measures beam profile and CC inclusive rate Two fine grained detectors (C/H₂0 target) sandwiched by
 Three gas TPCs in
 UA1/NOMAD Magnet (0.2 T) with
 Upstream pi0 detector (P0D)

Far Detector Super-Kamiokande

Over 10,000 PMTs

>50 kTon water Cherenkov detector

- >(22.5 kton fiducial volume)
- Cherenkov ring pattern can be used to distinguis lepton flavour

>Well-understood and stable detector

• Protons on target for physics: 1.510×10^{21} (total) = 7.57×10^{20} (v) + 7.53×10^{20} (v)

Oscillation analysis flow

- Neutrino flux prediction
 - Measurement of proton beam
 - Hadron production data from NA61
 - Beam direction measured with INGRID
 - Simulation with FLUKA and GEANT

- Neutrino interaction model
 - External cross-section data (MiniBooNE, SciBooNE, MINOS, etc.)
 - Simulation by NEUT

ND280 Event Categories

• Charged current (CC) with 0π

• CC 1π+

- CC Other ($\geq 1\pi$ or $\pi 0$,or $> 1\pi$ +
 - π 0 candidates have identified electrons in the TPC
- Disappearance analysis joins CC 1π + and CC other together

T2K Systematic Uncertainties

		ν_{μ} sample	ν_{e} sample	$\overline{ u}_{\mu}$ sample	$\overline{oldsymbol{ u}}_e$ sample
ν flux		16%	11%	7.1%	8%
ν flux and cross section	w/o ND measurement	21.8%	26.0%	9.2%	9.4%
	w/ ND measurement	2.7%	3.1%	3.4%	3.0%
v cross section due to difference of nuclear target btw. near and far		5.0%	4.7%	10%	9.8%
Final or Secondary Hadronic Interaction		3.0%	2.4%	2.1%	2.2%
Super-K detector		4.0%	2.7%	3.8%	3.0%
total	w/o ND measurement	23.5%	26.8%	14.4%	13.5%
	w/ ND measurement	7.7%	6.8%	11.6%	11.0%

2014

2015

Examples of error reduction on the expected number of events in Super-K

T2K Far Detector Data (Super-K)

- Select $\nu_{_{e}}$ and $\nu_{_{\mu}}$ in SK
- v_e appearance and v_{μ} disappearance clearly seen

Data from Runs 1-4 Neutrino mode 6.6x10²⁰ POT Phys. Rev. D91, 072010 (2015)

v Oscillation Result w/ Reactor Constraint

90% CL excluded Region becomes: $0.15\pi < \delta < 0.83\pi$ (NH) - $0.08\pi < \delta < 1.09\pi$ (IH)

Hints that CP phase may be non-zero

Joint Fit to both v_{e} and v_{μ} data

See Thesis prize talk of P. de Perio (R2-2)

PRD 91, 072010 (2015) ArXiv:1502.01550

ND280 \overline{v} Event Topologies

T2K

$\overline{\nu}_{\mu}$ CC-1Track

$\overline{\mathbf{v}}_{\mu}$ Prediction at Far Detector

- 1. Fully contained within the fiducial volume of SK
- 2. Have one and only one reconstructed ring
- 3. Have µ-like PID
- 4. Have muon momentum >200 MeV/c
- 5. Have one or fewer decay electron
-

- Predict the expected spectrum at SK using neutrino-mode oscillation parameters
- Dominated by ⊽ CCQE events, but many other contributions—this is why cross section model is so important
- Predict 36.1 events with oscillation and 106.8 without oscillation

Number of decay-e

ν Events at T2K Far Detector

T2K Far Detector Timing

- Fully contained events in the SK fiducial volume appear in time with the T2K beam
- Both ν-mode and ν̄mode events have good beam timing

$\overline{\mathbf{v}}_{\mu}^{\mu}$ disappearance analysis method

T2K Run 5 and 6 4x10²⁰ POT of anti-neutrino data

- Maximize likelihood which is a product of Poisson term and systematics uncertainty terms
- Three separate analyses including Frequentist and Bayesian, all agree
- Fix all oscillation parameters except $\sin^2\overline{\theta}_{_{23}}$ and $\Delta \overline{m}^2_{_{32}}$ using T2K neutrino data and PDG2014 as in table below

$\frac{1}{5}\sin^2\theta_{23}$	0.527	$\sin^2 \overline{\theta}_{23}$	0-1
Δm^2_{32}	$2.51 \times 10^{-3} \text{ eV}^2$	$\Delta \overline{m}^{2}_{32}$	0-0.02 eV ²
$sin^2\theta_{13}$	0.0248	$\sin^2 \overline{\theta}_{13}$	0.0248
$\sin^2 \theta_{12}$	0.304	$\sin^2 \overline{\theta}_{12}$	0.304
Δm^2_{21}	$7.53 \times 10^{-5} \text{ eV}^2$	$\Delta \overline{m}^2_{21}$	$7.53 \times 10^{-5} \text{ eV}^2$
δ	-1.55 rad	δ	-1.55 rad

T2K $\overline{\nu}_{\mu}$ oscillation

• Using 4.01x10²⁰ POT Phys. Rev. Lett. 116, 181801 (2016) $(\overline{v} \text{ to end of Run 6})$ $\sum_{i=1}^{2}$ Best fit values consistent with neutrino mode: T2K v 90% CL T2K \overline{v} best fit T2K v 68% CL T2K v best fit T2K v 90% CL $\sin^2 \overline{\theta}_{23} = 0.45^{+0.11}_{-0.07}$ MINOS \overline{v} best fit **MINOS ⊽** 90% CL Super-K \overline{v} best fit ////// Super-K ⊽ 90% CL $\Delta \overline{m}_{32}^2 = 2.51^{+0.29}_{-0.25} \times 10^{-3} eV^2$ MINOS result from PRL 110 (2013) 25, 251801 1.5 24 0.20.3 0.5 0.40.70.6 $\sin^2(\theta_{23})$ or $\sin^2(\overline{\theta}_{23})$

T2K-II

750 kW budget approved (2.48s \rightarrow 1.3s by 2019)

- Target Beam power 1.3 MW
- 20E21 POT by 2025~2026
- Increase effective statistics by up to 50%
 - horn current, SK fiducial volume, new event samples
- Reduce systematic error ~6%
 → ~4%

J-PARC MR expected performance and T2K-2 POT accumulation scenario

KEK Project Implementation Plan (PIP plan) \rightarrow Given highest priority by review panel Includes intermediate detectors (vPRISM)

Expected number of events (1:1 ν : $\overline{\nu}$ running case)

 v_e sample : 455 evts \pm 20% change depending on δ_{CP}

 \bar{v}_e sample : 129 evts ± 13% change depending on δ_{CP}

*** More details on T2K-II in talk of Tom Feusels vPRISM in talk of Mark Scott ***

Hyper-Kamiokande : Design Updated

- SK-like cylindrical vertical tank: Φ74m x H60m
 - Total volume: 260kton/tank, Fiducial volume: 190kton/tank
- · Photo-coverage = $40\% \rightarrow 40k$ ID PMTs/6.7k OD PMT
- · 2 tanks with staging (1 tank at day1)

Each 10x Vol. Super-Kamiokande
First tank by ~2026

J-Parc to Hyper-K CP Violation

- Exclusion of $\sin \delta_{CP}=0$
 - $>8\sigma(6\sigma)$ for $\delta = -90^{\circ}(-45^{\circ})$
 - ~80% coverage of δ parameter space with $>3\sigma$
- $\delta_{\rm CP}$ measurement precision
 - · 7~21° precision

		sinδ=0 exclusion		68% error	
		>3 σ	>5σ	δ=0°	δ =90 °
Old	7.5MWy	76%	58%	7.5°	۱ 9 °
2tank (staging)	13MWy	78%	62%	7.2°	21°

Prog. Theor. Exp. Phys (2015) 053C02

20

10

10

6

Running time (year)

δ

Summary and conclusions

- Data samples analyzed by T2K so far correspond to
 - ▶ 7x10²⁰ POT in v-mode
 - 4x10²⁰ POT in v-mode (additional 3x10²⁰ to be analyzed) *** Approved to exposure is 7.8x10²¹
- T2K reported observation of neutrino appearance $(v_{\mu} \rightarrow v_{e})$
- Muon anti-neutrino disappearance results consistent with our world leading v_{μ} disappearance measurements.
- J-PARC accelerator has achieved stable >400kW running
 Proposal for T2K-II with a goal of 20x10²¹ POT is formulated to reach a 3o significance for maximum CP violation

The T2K Collaboration

~ 500 members, 61 Institutes, 11 countries

Canada TRIUMF

- U. B. Columbia
- U. Regina
- U. Toronto
- U. Victoria
- U. Winnipeg
- York U.

CEA Saclay IPN Lyon LLR E. Poly. LPNHE Paris

Germany

Aachen U.__

INFN, U. Bari INFN, U. Napoli INFN, U. Padova INFN, U. Roma

Japan

ICRR Kamioka ICRR RCCN Kavli IPMU KEK Kobe D. Kyoto U. Miyagi U. Edu. Okayama U. Osaka City U.

Tokyo Metropolitan U.-

U. Tokyo

IFJ PAIN Cricow NCBJ, Warsaw U. Silesia, Katowice U. Warsaw Warsaw U. T.

Wroclaw U

oland

Russla INR

Spain IFAE, Barcelona IFIC, Valencia

Autonoma Madrid

Switzerland ETH Zurich U Bern U. Geneva

Imperial C. London Lancaster U Oxford U Queen Mary U. L. Royal Holloway U.L. STFC/Daresbury STFC/RAL U. Liverpool U. Sheffield

Warwic

Boston U Colorado S. U Duke U Louisiana State U Michigan S.U. Stony Brook U. U. C. Irvine U. Colorado U. Pittsburgh

U. Rochester U. Washington

Backups

Why?

- Observe anti-neutrino appearance
- Compare to v_{e} constrain δ_{CP}

How?

- Introduce discrete β parameter to modify appearance probability
- $\beta = 0$, null hypothesis, no \overline{v}_{e} appearance

$$P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) = \beta \times P_{\text{PMNS}}(\bar{\nu}_{\mu} \to \bar{\nu}_{e})$$

Parameter(s)	Treatment	Nominal value
$\sin^2 heta_{23}$	marginalized	0.528
$\sin^2 heta_{13}$	marginalized	0.025
$\sin^2 heta_{12}$	fixed	0.306
$ \Delta m^2_{32} $ (NH) / $ \Delta m^2_{31} $ (IH)	marginalized	$2.509 \times 10^{-3} \text{ eV}^2/\text{c}^4$
Δm^2_{21}	fixed	$7.5 \times 10^{-5} \text{ eV}^2/\text{c}^4$
δ_{CP}	marginalized	-1.601
Mass Hierarchy	marginalized	NH

Expected event rates for given oscillation parameters

- ~4 if β = 1
- ~1.6 if β = 0

Observed 3 events in the data

Observed $\beta = 0$ p-value	$\beta = 1 / \beta = 0$ Marginalised likelihood ratio		
0.26	1.09		

Data do not show evidence for or against $\overline{v}_{_{\!\!R}}$ appearance

CC, NC

μ**,e**

- Cross section on carbon (EGD1 INGRID)
- Cross section on carbon (FGD1, INGRID)
 Cross section on water (FGD2 and P0D)
- Cross sections on v versus v
- Cross sections vs proton kinematic and multipliticity, and transverse variable.
- Other analyses (CCkaon, NCγ, NCEL etc.)

Accepted as PRD: "Measurement of double-differential muon nueutrino charged-current interactions on $C_{8}H_{8}$ without pions in the final state," arXiv:1602.03652.

Near Detector Constraints on Flux and Cross-Section

- Flux parameters generally increased
- Some cross section parameters moved from nominal (eg. carbon multi-nucleon CC 2p-2h)

Flux and Cross Section Correlations before and after fit to Near Detector Data

(a) Prefit

(b) Postfit

Figure 49: The parameter correlations prior to and after the BANFFv3 fit. The parameters are 0-24 SK PF flux, 25-49 SK NF flux, 50 M_A^{QE} , 51 p_F ¹⁶O, 52 MEC ¹⁶O, 53 E_B ¹⁶O, 54 $CA5^{RES}$, 55 M_A^{RES} , 56 Isospin= $\frac{1}{2}$ Background, 57 ν_e/ν_{μ} , 58 CC Other Shape, 59 CC Coh ¹⁶O, 60 NC Coh, 35 61 NC Other

Flux prediction Positive focusing (neutrinomode)

10

10

T2K beam flux uncertainty Positive Focusing

10

E_v (GeV)

0 10⁻¹

SK: Positive Focussing Mode, \overline{v}_{μ}

SK: Positive Focussing Mode, \overline{v}_e Fractional Error Material Modeling Hadron Interactions 0.4 Proton Beam Profile & Off-axis Angle Proton Number Horn Current & Field 13av1 Error 0.3 Horn & Target Alignment - - - 11bv3.2 Error 0.2 0.1 10^{-1} 10E_v (GeV)

T2K beam flux uncertainty Negative Focusing

Flux prediction SK/ND280 correlation matrix

Flux Prediction Correlation Matrix

Bin ordering (groups): ND280, 250 kA, nu mu ND280, 250 kA, nu mu-bar ND280, 250 kA, nu e ND280, 250 kA, nu e-bar ND280, -250 kA, nu mu ND280, -250 kA, nu mu-bar ND280, -250 kA, nu_e ND280, -250 kA, nu e-bar SK, 250 kA, nu mu SK, 250 kA, nu mu-bar SK, 250 kA, nu e SK, 250 kA, nu e-bar SK, -250 kA, nu_mu SK, -250 kA, nu_mu-bar SK, -250 kA, nu e SK, -250 kA, nu e-bar

Each group energy binning: 0.0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-1.0, 1.0-1.2, 1.2-1.5, 1.5-2.0, 2.0-2.5, 2.5-3.0, 3.0-3.5, 3.5-4.0, 4.0-5.0, 5.0-7.0, 7.0-10.0, 10.0-30.0 GeV 40

ND280 Systematic Errors

ND280 TPC Particle ID by dE/dx

Negative tracks in the TPC.

Positive tracks in the TPC.

Near Detector ν_μ CCOπ Data compared to BANFF fit

Near Detector ν_μ CC1π Data compared to BANFF fit

Near Detector ν_μ CCother Data compared to BANFF fit

Near Detector vCC(1 track) Data compared to BANFF fit

Near Detector ν CC(N track) Data compared to BANFF fit

Near Detector vCC(1 track) Data compared to BANFF fit

Near Detector ν CC(N track) Data compared to BANFF fit

50

JPARC Beamline

- Located in Tokai-village, 60km N.E. of KEK
- Completed in 2009

• MR

- * 1567.5 m circum.
- **◆** Tp = 30GeV
- * 8 bunch
- Rep cycle: 2.48sec (now)
- Design goal
 - * RCS: 1MW
 - * MR: 750kW
- MR achieved 220kW stable operation for neutrino experiment

JPARC Neutrino Beamline

Three flavour joint oscillation analysis

• Use both
$$v_{e}$$
 and v_{μ} datasets from SK to do a joint fit for
oscillation parameters: θ_{13} , θ_{23} , Δm_{32}^{2} and δ_{CP}
 $P(v_{\mu} \rightarrow v_{e}) \approx 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin(\frac{\Delta m_{31}^{2}L}{4E}) \times \left(1 + \frac{2a}{\Delta m_{31}^{2}}(1 - 2S_{13}^{2})\right)$ Dominant vacuum term
+ $8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos(\frac{\Delta m_{32}^{2}L}{4E})\sin(\frac{\Delta m_{31}^{2}L}{4E})\sin(\frac{\Delta m_{21}^{2}L}{4E})$ CP conserving
term
 $-8C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos(\frac{\Delta m_{32}^{2}L}{4E})\sin(\frac{\Delta m_{31}^{2}L}{4E})\left(1 - 2S_{13}^{2}\right)$ Matter effect terms
 $-8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin(\frac{\Delta m_{32}^{2}L}{4E})\sin(\frac{\Delta m_{31}^{2}L}{4E})\sin(\frac{\Delta m_{21}^{2}L}{4E})$ CP sin δ term
 $+4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta)\sin(\frac{\Delta m_{21}^{2}L}{4E})$ Solar term
 $P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - (C_{13}^{4}\sin^{2}2\theta_{23} + \sin^{2}2\theta_{13}S_{23}^{2})\sin^{2}(\frac{\Delta m_{31}^{2}L}{4E})$

Notes: Cij = cos
$$\theta$$
ij, Sij = sin θ ij
 $a=2\sqrt{2}G_F n_e E=7.56\times 10^{-5}\rho(g/cm^3)E(GeV)$

J. Arafune, M. Koike and J. Sato, Phys. Rev.D56, 3093 (1997).

53

3 flavour oscillation approx. w/ matter effects

NA61/Shine hadron production

- Large acceptance spectrometer with dE/dx and TOF counters
- 30 GeV proton beam matches T2K.
- Both a "thin" .04λtarget and a replica of the T2K target
- Can measure pion and kaon production

NA61/Shine Increased coverage (2009 data)

T2K-II Sensitivity

Hierarchy assumed known

KH Known Hierarchy (Normal)

UH Unknown Hierarchy (Normal)

> More details In talk by Tom Feusels at 2pm

ν_e disappearance search with ND280

