Neutron flux normalization with the $^{51}V(p, n)^{51}Cr$ reaction for the calibration of PICO bubble chambers

Frédéric Girard
Laurentian University – Université de Montréal

Introduction

The PICO experiment uses bubble chambers to search for dark matter. Two C_2F_5 loaded detectors, PICO 2L and PICO 60, are currently operated in SNOLAB. The small PICO 0.1 test chamber is used for neutron calibration at the accelerator facility at the Université de Montréal. A 1.6 MeV proton beam is used to generate mono-energetic neutrons via the $^{51}V(p, n)^{51}Cr$ reaction. Neutron flux normalization is done with two 3He neutron counters. An independent absolute neutron flux measurement was needed to relate the 3He counter rates to the neutron flux.

Method

The absolute flux measurement was done by Proton Activation Analysis (PAA). 9.94% of ^{51}Cr produced in the ^{51}V target by the nuclear reaction are in a metastable state, emitting a 320 keV photon when reverting back to ^{51}V by electron capture. Measuring the gamma emission after activation allows for the determination of the quantity of ^{51}Cr produced, and thus the total amount of neutrons emitted. A HPGe detector was used to measure the target activity after a 56th activation period at the 50 keV resonance. (Fig. 1, peak VII)

![Gamma spectrum of the activated target](image)

The main peak is ^{51}Cr and the second, smaller peak was identified as 7Be. Note the much lower count rate than that of the calibration source.

Fig. 1: $^{51}V(p, n)^{51}Cr$ reaction spectrum. From: J. H. Gibbons, R. L. Macklin, et H. W. Schmitt, Phys. Rev. 100, 167 (1955).

Fig. 2: ^{133}Ba calibration source spectrum. The HPGe detector was first calibrated with a 1 μCi ^{133}Ba source standard. ^{133}Ba was chosen for its four peaks located around the 320 keV region, shown as the blue dotted line.

Results

Efficiency as a function of energy

Activity as a function of time

Fig. 3: Gamma spectrum of the activated target. The peak at 320.1 keV is ^{51}Cr and the second, smaller peak was identified as 7Be. Note the much lower count rate than that of the calibration source.

![Gamma spectrum of the activated target](image)

The PICO collaboration uses test beam data to determine the detection efficiency and the energy threshold as a function of the operating parameters, pressure and temperature. These measurements were able to improve the detailed understanding of the detection technique. Next steps are to extend the beam measurements to other promising detector liquids.

Conclusions

The relative efficiency fit of the HPGe detector. The calibration source was put at 10 cm. The efficiency at 320 keV (blue dotted line) is $\varepsilon_E = (0.247 \pm 0.007)\%$.

Fig. 4: Relative efficiency fit of the HPGe detector. The calibration source was put at 10 cm. The efficiency at 320 keV (blue dotted line) is $\varepsilon_E = (0.247 \pm 0.007)\%$.

Fig. 5: Activity of the target calculated from the HPGe detector data. Fitting a decay function with the half-life of ^{51}Cr (27.7010 ± 0.0011 days) allowed for the determination of the target activity at $t = 0$ as being 263.3 ± 14.4 Bq.

Fig. 6: Activity of the target during the activation. The total amount of neutrons produced is $N_n = (9.52 \pm 0.52) \cdot 10^8$ neutrons. This value is compared to the 3He counts recorded during the activation period to infer the efficiency $\varepsilon_{He} = \frac{N_{He}}{N_n}$.