Towards First Physics at Belle II

Torben Ferber (ferber@physics.ubc.ca) 15-June-2016, CAP 2016, Ottawa

Energy or Intensity?

- Energy frontier:
 - Production of New Physics (NP) from collisions.
 - Limited by beam energy.

- Intensity frontier:
 - NP in virtual processes.
 - Limited by statistics.

Belle and BaBar.

- Belle at KEKB, Japan and BaBar at PEP-II, USA.
- Very high luminosity: ~2×10³⁴ /cm²/s (Belle)
- Collision energy at Y(nS): Mainly at E_{см} = 10.58 GeV. _____ BR(Y(4S)→BB) > 96%

 $\Delta z \approx \beta \gamma \Delta$

 Asymmetric beam energies: 8 GeV (e⁻) / 3.5 GeV (e⁺) (Belle)
→ Boosted BB pairs.

(Some) Belle II Physics.

relative errors.				
Observables	Belle	Belle II	\mathcal{L}_s	
	(2014)	$5 \text{ ab}^{-1} 50 \text{ ab}^{-1}$	$[ab^{-1}]$	
$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012$	$\pm 0.012 \ \pm 0.008$	6	
α		$\pm 2^{\circ}$ $\pm 1^{\circ}$		
γ	$\pm 14^{\circ}$	$\pm 6^{\circ}$ $\pm 1.5^{\circ}$		
$S(B \to \phi K^0)$	$0.90\substack{+0.09 \\ -0.19}$	$\pm 0.053 \ \pm 0.018$	>50	
$S(B\to\eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	$\pm 0.028 \ \pm 0.011$	>50	
$S(B \to K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	$\pm 0.100 \ \pm 0.033$	44	
$ V_{cb} $ incl.	$\pm 2.4\%$	$\pm 1.0\%$	< 1	
$ V_{cb} $ excl.	$\pm 3.6\%$	$\pm 1.8\% \ \pm 1.4\%$	< 1	
$ V_{ub} $ incl.	$\pm 6.5\%$	$\pm 3.4\% \pm 3.0\%$	2	
$ V_{ub} $ excl. (had. tag.)	$\pm 10.8\%$	$\pm 4.7\% \pm 2.4\%$	20	
$ V_{ub} $ excl. (untag.)	$\pm 9.4\%$	$\pm 4.2\% \pm 2.2\%$	3	
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	96 ± 26	$\pm 10\% \pm 5\%$	46	
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	$5\sigma >> 5\sigma$	>50	
$R(B \to D \tau \nu)$	$\pm 16.5\%$	$\pm 5.6\% \pm 3.4\%$	4	
$R(B\to D^*\tau\nu)$	$\pm 9.0\%$	$\pm 3.2\% \ \pm 2.1\%$	3	
$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40	$\pm 30\%$	>50	
$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55	$\pm 30\%$	>50	
$\mathcal{B}(B \to X_s \gamma) \ [10^{-6}]$	$\pm 13\%$	$\pm 7\%$ $\pm 6\%$	< 1	
$A_{CP}(B \to X_s \gamma)$		$\pm 0.01 \ \pm 0.005$	8	
$S(B\to K^0_S\pi^0\gamma)$	$-0.10 \pm 0.31 \pm 0.07$	$\pm 0.11 \ \pm 0.035$	> 50	
$S(B \to \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	$\pm 0.23 \pm 0.07$	> 50	
$C_7/C_9 \ (B \to X_s \ell \ell)$	${\sim}20\%$	10% 5%		
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	± 0.3		
$\mathcal{B}(B_s \to \tau^+ \tau^-) \ [10^{-3}]$		< 2		

Statistical precision ≈ systematic uncertaint

B. Golob et al., BELLE2-NOTE-PH-2015-002

(Some) Belle II Physics.

B. Golob et al., BELLE2-NOTE-PH-2015-002

Peak luminosity over time.

SuperKEKB: Nano Beam Scheme.

vertical beta function at IP

SuperKEKB is running!

May 31, 2016: LER beam current at 825 mA, HER at 730 mA.

Belle II Collaboration.

620 members (including 220 grad students) 100 institutes

Belle II Detector.

Electromagnetic Calorimeter (ECL):

Pure CsI + waveform sampling (endcaps)

CsI(Tl), waveform sampling (barrel)

K_L and muon detector (KLM): Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (endcaps)

Particle Identification (PID): Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

electron (7GeV)

Possible

upgrade

Beryllium beam pipe 2cm diameter

Vertex Detector: 2 layers DEPFET 4 layers DSSD

Central Drift Chamber (CDC): He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics positron (4GeV)

Need to cope with much higher luminosity and beam background.

Belle II Detector: Calorimeter (ECL).

• Precise measurement of γ (π^0) and the so called 'extra energy' are crucial, in particular with respect to LHCb.

 A generic Y(4S)→BB decay creates 11 photons on average, almost only from π⁰ decays. About half of the photons having energies less than 200 MeV. Lowest photon energy used for physics ~40 MeV.

 Reuse existing CsI(TI) crystals from Belle (excellent energy resolution but quite slow). Belle achieved an energy resolution of about 1.8% at high energies.

Belle II Detector: Calorimeter (ECL).

• New digitization and waveform fitting electronics to cope with much higher beam background (pile up).

 New robust reconstruction (need a conceptually different approach for very high backgrounds) and calibration (including time).

 Possible upgrade of forward endcap crystals to pure Csl under study (worse energy resolution but very fast).

Belle II ECL: Reconstruction.

e.g. 30 MeV

40

40

MC preliminary

Belle II ECL: Reconstruction.

 π^0 reconstruction using two photon combinations: Significantly better energy and position reconstruction and overlap energy sharing.

Belle II Luminosity Projection.

Belle II Luminosity Projection.

Phase 1 (ongoing).

- No Belle II detector.
- BEAST II (Beam Exorcism for A STable Belle II Experiment).
- Simple background detectors (diodes, TPCs, Csl crystals, He3 tubes).
- No final focus magnets.

Phase 2: End of 2017.

- Final focus magnets (superconducting).
- Full Belle II outer detectors and drift chamber.
- No final vertex detectors.

Phase 2: Beam Background Monitoring.

- Goal: Providing live background rate information to SuperKEKB operators during Phase 2 (Detector commissioning) and Phase 3 (Physics run).
- 4 LYSO or CsI crystals with photopentode readout in each endcap shield.
- Readout time fast enough to observe injection backgrounds.

McGill UMontreal

Phase 2: First Physics.

- Main purpose of Phase 2 is detector and accelerator commissioning.
- Unlike at the energy frontier, Belle II needs more data than Belle+BaBar to address anomalies (and find new physics). Possible scenarios for the very first data include:
 - Run at non-Y(4S) energy.
 - Implement special triggers (that may have too high rate at full luminosity): Search for a dark photon decaying invisibly.

Phase 2: First Physics.

- Main purpose of Phase 2 is detector and accelerator commissioning.
- Unlike at the energy frontier, Belle II needs more data than Belle+BaBar to address anomalies (and find new physics). Possible scenarios for the very first data include:
 - Run at non-Y(4S) energy.
 - Implement special triggers (that may have too high rate at full luminosity): Search for a dark photon decaying invisibly.

Dark photons.

- We know there is dark matter (DM), but we don't know what it is.
- We know DM couples very weakly to SM particles.
- In the so called "vector portal", a dark photon A' mixes* with the SM photon γ with strength ε:

Dark photon decaying invisibly.

 If DM is part of a dark sector, the dark photon A' can decay into dark matter χ:

Dark photon decaying invisibly.

• If DM is part of a dark sector, the dark photon A' can decay into dark matter χ :

Dark photon decaying invisibly.

Dark photon decaying invisibly at BaBar.

- BaBar recorded 57 fb⁻¹ with a single photon trigger (E*≈1-2 GeV, trigger rate ~1/3 of all triggers). Belle never had a single photon trigger.
- BaBar used about 28 fb⁻¹ in a search for a light Higgs via Y(3S)→γA⁰, A⁰ → invisible (unpublished, BaBar-CONF-08/019).

Dark photon decaying invisibly at BaBar.

Dark photon decaying invisibly at Belle II.

- General requirement:
 - Trigger (both to collect signal events and to understand backgrounds).
 - Understanding of peaking background (for on-shell decays).

 Understanding of (absolute) continuum QED backgrounds (off-shell decays). For on-shell decays this is a smooth exponential. Dark photon decaying invisibly at Belle II: Background ($E^* > 1 \text{GeV}$, γ in barrel).

Dark photon decaying invisibly at Belle II: Peaking backgrounds.

- Unlike BaBar, Belle II Barrel ECL is not projective in φ: No "gaps" between the crystals, only between barrel and endcaps.
- The probability that a photon does not interact in an ECL crystal is about $(e^{(-7/9)})^{L/X0} \approx 3.4 \times 10^{-6} (L/X_0 \approx 16.2)$.

Dark photon decaying invisibly at Belle II.

 Extrapolating from BaBar preliminary result; correct for different angular distribution of signal; improved systematic error at low mass.

Dark photon decaying visibly at Belle II.

Summary

- Belle II offers high sensitivity to New Physics at the intensity frontier, largely complementary to LHCb.
- Significantly higher beam background require new reconstruction software. The calorimeter software development and calibration is one main contribution of the Canadian groups.
- Belle II will start detector commissioning end of 2017, significant Canadian contribution in beam background simulations and measurements. The search for a dark photon decaying invisibly may be possible even in that phase.
- Physics data taking starts end of 2018. " $50 \times Belle$ " by 2024.

Backup slides

ECL.

Vertex detectors.

PXD module 0.

Belle II ECL: Background Noise (MC).

Nominal background

Belle II vs. LHCb.

TABLE XLI: Expected errors on several selected flavour observables with an integrated luminosity of 5 ab^{-1} and 50 ab^{-1} of Belle
II data. The current results from Belle, or from BaBar where relevant (denoted with a †) are also given. Items marked with a ‡
are estimates based on similar measurements. Errors given in % represent relative errors.

	Observables	Belle or LHCb [*]	Belle II		LHCb	
		(2014)	5 ab^{-1}	50 ab^{-1}	$8 \text{ fb}^{-1}(2018)$	$50~{\rm fb^{-1}}$
UT angles	$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012 (0.9^\circ)$	0.4°	0.3°	0.6°	0.3°
	α [°]	85 ± 4 (Belle+BaBar)	2	1		
	$\gamma \ [\circ] \ (B \to D^{(*)} K^{(*)})$	68 ± 14	6	1.5	4	1
	$2\beta_s(B_s \to J/\psi\phi)$ [rad]	$0.07\pm 0.09\pm 0.01^*$			0.025	0.009
Gluonic penguins	$S(B \to \phi K^0)$	$0.90\substack{+0.09\\-0.19}$	0.053	0.018	0.2	0.04
	$S(B\to\eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	0.028	0.011		
	$S(B\to K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	0.100	0.033		
	$\beta_s^{\text{eff}}(B_s \to \phi \phi) \text{ [rad]}$	$-0.17\pm0.15\pm0.03^*$			0.12	0.03
	$\beta_s^{\text{eff}}(B_s \to K^{*0} \bar{K}^{*0}) \text{ [rad]}$	_			0.13	0.03
Direct CP in hadronic Decays	$\mathcal{A}(B \to K^0 \pi^0)$	$-0.05 \pm 0.14 \pm 0.05$	0.07	0.04		
UT sides	$ V_{cb} $ incl.	$41.6 \cdot 10^{-3} (1 \pm 2.4\%)$	1.2%			
	$ V_{cb} $ excl.	$37.5 \cdot 10^{-3} (1 \pm 3.0\%_{ex.} \pm 2.7\%_{th.})$	1.8%	1.4%		
	$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} (1 \pm 6.0\%_{ex.} \pm 2.5\%_{th.})$	3.4%	3.0%		
	$\left V_{ub}\right $ excl. (had. tag.)	$3.52\cdot 10^{-3} (1\pm 10.8\%)$	4.7%	2.4%		
Leptonic and Semi-tauonic	$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	$96(1 \pm 26\%)$	10%	5%		
	$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	20%	7%		
	$R(B\to D\tau\nu)$ [Had. tag]	$0.440(1\pm 16.5\%)^{\dagger}$	5.6%	3.4%		
	$R(B \to D^* \tau \nu)^{\dagger}$ [Had. tag]	$0.332 (1\pm9.0\%)^{\dagger}$	3.2%	2.1%		
Radiative	$\mathcal{B}(B \to X_s \gamma)$	$3.45 \cdot 10^{-4} (1 \pm 4.3\% \pm 11.6\%)$	7%	6%		
	$A_{CP}(B \rightarrow X_{s,d}\gamma) \ [10^{-2}]$	$2.2\pm4.0\pm0.8$	1	0.5		
	$S(B \to K_S^0 \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	0.11	0.035		
	$2\beta_s^{\text{eff}}(B_s \to \phi \gamma)$	_			0.13	0.03
	$S(B\to\rho\gamma)$	$-0.83 \pm 0.65 \pm 0.18$	0.23	0.07		
	$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	0.3	_		
Electroweak penguins	$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40	< 15	30%		
	$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55	< 21	30%		
	$C_7/C_9 \ (B \to X_s \ell \ell)$	$\sim 20\%$	10%	5%		
	$\mathcal{B}(B_s \to \tau \tau) \ [10^{-3}]$	-	< 2	_		
	$\mathcal{B}(B_s \to \mu \mu) \ [10^{-9}]$	$2.9^{+1.1*}_{-1.0}$			0.5	0.2

B. Golob et al., BELLE2-NOTE-PH-2015-002

Belle II ECL: Crystal Calibration.

- Energy calibration: Convert fitted amplitude to deposited energy. Possible non-uniform effects due to radiation damage.
- Time calibration: Convert fitted ADC clock ticks to time relative to zero (trigger). Depends on amplitude and background level.

Dark photon decaying invisibly at BaBar.

R. Essig et al., JHEP 1311 (2013) 167 Y.M. Zhong, B2TIP Pittsburg 2016