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What happens in a single interaction?

Some ancilla is picked (from an ensemble) and engages with the system:
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What happens in a single interaction?

Then, depending on the ancilla chosen, the joint system evolves unitarily:
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What happens in a single interaction?

Following the interaction, the ancilla is discarded:
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What happens in a single interaction?

Finally we average over all ancillas which could have been chosen:
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What happens in a single interaction?

Optional: The ancillas can be reused if they are cleaned.
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Some Applicable Scenarios

Through a Gas:

In a Gas:

NMR: Nuclear spin interacting with electrons

Gravitational Decoherence1

Atom bombarded by a series of atoms/light pulses:

or

Entanglement Farming2

Cavity bombarded by atoms:

1D. Kafri, J.M. Taylor, G. J. Milburn; New Journal of Physics, Volume 16, June 2014
2E. Matrin-Martinez, E. Brown, W. Donnelly, A. Kempf; Phys. Rev. A 88, 052310 (2013)
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Results

• In fast interaction limit (δt → 0), evolution is unitary

• Decoherence related to classical/quantum ‘uncertainty’

• Applications

- Decoherence in Media

- Measurement Problem

- Quantum Information Processing

- Quantum Thermodynamics
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Interpolation Scheme

Single interaction: φ̄(δt) = Σk pk TrAk

(
Uδt,k(δt)( · ⊗ ρAk

)Uδt,k(δt)†
)

System evolves under repeated interactions, at t = n δt we have,

ρS(n δt) = φ̄
(
δt
)
[φ̄
(
δt
)
[... φ̄

(
δt
)
[ρS(0)

]
...
]]

= φ̄
(
δt
)
n
[
ρS(0)

]

Issue: Only know about discrete time points.
Solution: We interpolate the system state as,

ρS(t) = Ωδt(t)
[
ρS(0)

]
with exact matching at discrete time points, Ωδt(n δt) = φ̄(δt)n.

Issue: There are many choices for such a interpolation scheme.
Solution: Restrict to be Markovian, Ωδt(t) = eLδt t . Yields unique

Lδt =
1

δt
log
(
φ̄(δt)

)
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Master Equation

This effective Liouvillian Lδt can be expanded as a series in δt generates
time evolution for the interpolation scheme,

d

dt
ρS(t) = Lδt [ρS(t)] = L0[ρS(t)] + δt L1[ρS(t)] + δt2L2[ρS(t)] + . . .

For rapid interactions, δt E/~� 1, we can truncate.

We take the general system-ancilla interaction Hamiltonian,

Hk(ξ) = HS ⊗ 1 + 1⊗ HAk
+ HSAk

(ξ) where ξ = t/δt

and use it to explicitly find the forms of the coefficients L0 and L1.
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Zeroth Order Liouvillian

To zeroth order the evolution is entirely unitary!

L0[ · ] =
−i
~

[Heff
(0), · ]

where Heff
(0) = HS + H(0). Free evolution plus interaction effects,

H(0) =
∑
k

pk TrAk

(
ρAk
∫ 1

0 dξ HSAk
(ξ)
)
,

The system and ancilla do not become entangled at leading order in δt.

Interpretation: Pushing vs. Talking
Ancillas push the system but do not have time to talk (entangle) with it.3

3D. Layden, E. Matrin-Martinez and A. Kempf; Phys. Rev. A 93, 040301(R) (2016)
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First Order Liouvillian

First subleading dynamics introduce leading order dissipative effect as well
as subleading unitary dynamics.

L1[ · ] =
−i
~

[Heff
(1), · ] +

1

2
D[ · ]

The new subleading unitary term is Heff
(1) = H

(1)
1 + H

(1)
2 + H

(1)
3 where

H
(1)
1 =

∑
k

pk
〈
G1

(−i
~

[HSAk
(ξ),HS]

)〉
k

H
(1)
2 =

∑
k

pk
〈
G2

(−i
~

[HSAk
(ξ),HAk

]
)〉

k

H
(1)
3 =

∑
k

pk
〈
G3

(−i
~

[HSAk
(ξ1),HSAk

(ξ2)]
)〉

k

G1(X ) =

∫ 1

0

(ξ − 1/2)X (ξ) dξ

G2(X ) =

∫ 1

0

ξ X (ξ) dξ

G3(Y ) =
1

2

∫ 1

0

dξ1

∫ ξ1

0

dξ2 Y (ξ1, ξ2)
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Leading Order Dissipative Terms

The leading order dissipation is

D[ · ] =
1

~2
[H(0), [H(0), · ]]− 1

~2

∑
k

pkTrAk

(
[G0(HSAk

), [G0(HSAk
), · ⊗ ρAk

]]
)

Dissipation is related to ‘uncertainty’ of interaction,

D[ρS ] =
∑
k

pk TrAk

(
Var(C )[ρS ⊗ ρAk

]
)

where

Variance: Var(C ) = 〈〈Ck
2〉〉 − 〈〈Ck〉〉2

Generalized Average: 〈〈Ck〉〉[ρSAk
] = ρAk

⊗ Σlpl TrAl

(
Cl [ρSAl

]
)

Diff. Evolution Op: Ck [ρSAk
] = (i~)−1[G0(HSAk

), ρSAk
]

Grimmer (UW IQC) Repeated Interactions arXiv:1605.04302 June 16, 2016 13 / 19



Leading Order Dissipative Terms

The leading order dissipation is

D[ · ] =
1

~2
[H(0), [H(0), · ]]− 1

~2

∑
k

pkTrAk

(
[G0(HSAk

), [G0(HSAk
), · ⊗ ρAk

]]
)

Dissipation is related to ‘uncertainty’ of interaction,

D[ρS ] =
∑
k

pk TrAk

(
Var(C )[ρS ⊗ ρAk

]
)

where

Variance: Var(C ) = 〈〈Ck
2〉〉 − 〈〈Ck〉〉2

Generalized Average: 〈〈Ck〉〉[ρSAk
] = ρAk

⊗ Σlpl TrAl

(
Cl [ρSAl

]
)

Diff. Evolution Op: Ck [ρSAk
] = (i~)−1[G0(HSAk

), ρSAk
]

Grimmer (UW IQC) Repeated Interactions arXiv:1605.04302 June 16, 2016 13 / 19



Dissipation as Uncertainty: Decoherence Rates

In some simple examples we see, decoherence rates are proportional to
how much information we are ignoring in the relevant ancilla observable.

Qubit σzσz Coupling: Γ = 2 δt J0
2 ∆2

σA,Z
∆2

X = 〈X 2〉 − 〈X 〉2

Qubit σxσx Coupling: Γ = 2 δt J0
2 ∆2

σA,X

Product Interaction: Γ = δt |JS|2 ∆2
JA
/~2

(HSA = JS ⊗ JA)

All decoherence rates bounded as Γ ≤ 〈Mk〉 δt E 2/~2 +O(δt2) where
〈Mk〉 is the average ancilla dimension and E is the interaction energy scale.

- Could be used to bound the dimension of environment’s constituents.
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Example: Qubit Qubit Interaction

As an example we consider a general interaction between qubits,

H(ξ) = ~ ωS σS,z + ~ ωA σA,z + ~ σA J(ξ)σS

with ancillas with bloch vectors, R = TrA

(
ρA σA

)
(Red).

b a c d

b) σXσX : Dephasing, a) σZσZ : Projection, c,d) σσ: Thermalizing/Purification

Green: ωeff axis, Red: Initial ancilla state, Blue: System state
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Conclusion

General Model for Rapid Repeated Interactions:

- Ensemble of Ancilla/Coupling types

- No specific interaction Hamiltonians/ancilla state

In the continuum limit δt → 0 the evolution is unitary:

- Pushing but no Talking

- Unitary Control

At small finite δt there are dissipative effects:

- Leading order information exchange

- Dissipation related to uncertainty

Qubit Examples:

- Dephasing: Decoherence in Media

- Projection: Measurement Problem

- Thermalization: Quantum Thermodynamics

- Purification: Pure State Initialization
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Questions?
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Comparison to Other Schemes

• High Generality

- Allow for ensemble of different interaction types.

- No specific form chosen for ancillas

- No specific form chosen for interaction Hamiltonian

- Caves-Milburn repeated interaction model as a special case.

• Closed, analytic expression for master equation

• Finite interaction duration, δt

- Do not take continuum limit (δt → 0)

- Necessary for information exchange at finite interaction strength.
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Plan of Attack: Series of Series

Model Inputs→ pk , ρAk
, and Hk(t/δt)

→ Evolve→ pk , ρAk
, and Uδt,k(δt) = T exp

(
∫ δt0 dτ Hk(τ/δt)

)
→ Dyson Series→ pk , ρAk

, and Uδt,k(δt) = 1 + δt Uk,1 + δt2 Uk,2 + ...

→ Average Int.→ φ̄(δt) = Σk pk TrAk

(
Uδt,k(δt)( · ⊗ ρAk

)Uδt,k(δt)†
)

→ Expand Series→ φ̄(δt) = 1 + δt φ̄1 + δt2 φ̄2 + ...

→ Interpolation→ Lδt = log
(
φ̄(δt)

)
/δt

→ Expand Series→ Lδt = L0 + δt L1 + δt2 L2 + ...

k , Labels for potential Ancilla’s.
pk , Probability for Ancilla k.
Hk , Hamiltonian for Ancilla k.

Uδt,k(δt), Unitary for Ancilla k.
φ̄(δt), Effective Discrete Updater.
Lδt , Effective Liouvillian.
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