Turnaround radius in an accelerated universe for Einstein and for modified gravity

Valerio Faraoni

1Bishop’s University, Sherbrooke

Outline

1. Turnaround radius with Hawking mass in GR
2. Turnaround radius in scalar-tensor gravity
3. Conclusions
Turnaround radius with Hawking mass

Part of a larger program aiming at applying quasilocal mass in cosmology. Already used to test whether Newtonian N-Body simulations of large scale structures are reliable (VF, Prain & Lapierre-Léonard, PRD 2015).

Consider present accelerated era of the universe and the largest bound objects in the sky. The turnaround radius was suggested as a possible way to test dark energy (Roupas et al. 2014, PRD 89, 083002; Pavlidou & Tomaras 2014, JCAP 09, 020; Pavlidou, Tetradis, Tomaras 2014, JCAP 05, 017)

but the concept of TR is older (Souriau 1981; Stuchlik 1983; Stuchlik et al. 1989-2005; Mizony & Lachiéze-Rey 2005; Blau & Rollier 2008, ...)

Consider an accelerated FLRW universe with one spherical inhomogeneity; massive test particles with zero radial initial velocity cannot collapse if they are outside a critical radius R_c (turnaround radius), but can only expand.
For $R < R_c$, outer layers of dust reach zero radial acceleration and collapse under self-gravity. If you cross outside R_c in geodesic motion, you will never fall back.

TR studied in Schwarzschild-de Sitter, Lemaître-Tolman-Bondi, and McVittie spacetimes.

SdS (heuristic):
\[
ds^2 = - \left(1 - \frac{2M}{R} - H^2 R^2 \right) dt^2 + \frac{dR^2}{\left(1 - \frac{2M}{R} - H^2 R^2 \right)} + R^2 d\Omega_2^2
\]

\[
H = \sqrt{\Lambda/3}, \quad R_c = \left(\frac{3GM}{\Lambda}\right)^{1/3}
\]
Turnaround radius with Hawking mass in GR

Turnaround radius in scalar-tensor gravity

Conclusions
Radial timelike geodesics obey $R(\tau) = (R^3 - R_c^3) H^2 / R^2$

LTB models (dust) Pavlidou, Tetradi & Tomaras 2014 have

$$ds^2 = -dt^2 + \frac{R'(t, r)}{1 + f(r)} dr^2 + R^2(t, r) d\Omega^2_{(2)}$$

with $' \equiv d/dr$, $f(r)$ related to initial density profile. Radial timelike geodesics obey

$$\ddot{R} = - \frac{G\mathcal{M}(r)}{R^2} + \frac{\Lambda R}{3}$$

and the turnaround radius is $R_c = \left(\frac{3G\mathcal{M}(r_c)}{\Lambda} \right)^{1/3}$ where

$\mathcal{M}(r) = \int_0^R dR R^2 \rho$ Lemaître mass.
More realistic: post-FLRW space (1st order)

\[ds^2 = a^2(\eta) \left[- (1 + 2\phi) \, d\eta^2 + (1 - 2\phi) \left(dr^2 + r^2 d\Omega^2_{(2)} \right) \right] \]

Pavlidou, Tetradi & Tomaras find timelike radial geodesics obey

\[\ddot{R} = -\frac{4\pi}{3} \left(\rho_{DE} + 3P_{DE} \right) R - \frac{GM(r)}{R^2} = \frac{\dot{a}}{a} - \frac{GM(r)}{R^2} \]

where it is suggested (but not written down)

\[\mathcal{M}(r) = \int_0^R dR \, R^2 \rho_{\text{total}} \]

\[\rightarrow \quad R_c = \left(\frac{3\mathcal{M}}{4(3w + 1)\pi \rho_{DE}} \right)^{1/3} \]

(reduces to SdS expression for \(w = -1 \)).
Questions: (not answered, nor posed)

- gauge-invariance;
- what is the “mass in a sphere of radius R”? Should it include ρ_{DE}? If not, why? Should it include only $\rho_{\text{perturbation}}$? Why?
Use Hawking-Hayward quasilocal energy (reduces to Misner-Sharp-Hernandez mass in spherical symmetry) and a new splitting of it. Assumptions:

- GR is valid
- 1st order in metric perturbations; spherical symmetry \(\phi = \phi(r) \) (consequences of \(\phi \neq \phi(r) \) discussed in Barrow & Saich 1993, MNRAS 262, 717)
- FLRW background, spatially flat, accelerated by DE with \(\rho_{DE}, P_{DE} = w\rho_{DE} \)
Physical mass is the Hawking quasilocal energy\(^1\)
Idea: total mass in a region bounded by a surface \(S\) is measured by behaviour of null geodesics at \(S\)

\[
S = \text{closed spacelike orientable 2-surface}
\]

\[
\mathcal{R} = \text{induced Ricci scalar on } S
\]

\[
\theta(\pm) = \text{expansions of outgoing/ingoing null geodesic congruences from } S
\]

General perturbations of FLRW

\[\sigma_{ab}^{(\pm)} = \text{shear tensors of null congruences} \]

\[\omega^a = \text{projection on } S \text{ of the commutator of null normal vectors to } S \text{ (anholonomicity)} \]

\[\mu = \text{volume 2-form on } S \]

\[A = \text{area of } S \]

\[M_{HH} \equiv \frac{1}{8\pi} \sqrt{\frac{A}{16\pi}} \int_S \mu \left(R + \theta^{(+)} \theta^{(-)} - \frac{1}{2} \sigma_{ab}^{(+)} \sigma_{ab}^{(-)} - 2\omega_a \omega^a \right) \]
Compute for

$$d\tilde{s}^2 = a^2(\eta) \left[- (1 + 2\phi_N) d\eta^2 + (1 - 2\phi_N) \left(dr^2 + r^2 d\Omega_{(2)}^2 \right) \right]$$

post-Newtonian

and attempt to decompose as $M_{HH} = (\text{local}) + (\text{cosmological})$

to first order (general pert.)
Final result (with two methods) is

\[\tilde{M}_H = \Omega M_H - \frac{R\Omega,\eta \Omega,\eta}{4\pi} \int_S \mu \phi_N + \sqrt{\frac{R^3 \Omega^2,\eta}{2}} \]

local + cosmological

Prain, Vitagliano, VF & Lapierre-Léonard, *Class. Quantum Grav.*, in press

Now adapt to spherical symmetry →
Turnaround radius with Hawking mass in GR

\[M_H = ma + \frac{H^2 R^3}{2} (1 - \phi) \approx ma + \frac{H^2 R^3}{2} \]

with \(m = \int d^3 \vec{x} \nabla^2 \phi \) Newtonian mass \(\sim \) comoving length scale \(ma \sim \) physical length scale. Criterion for a system on the verge of breaking down is now

local part \quad ma = \frac{H^2 R^3}{2} \quad \text{cosmological part } \rightarrow \quad R_c(t) = \left(\frac{2ma}{H^2} \right)^{1/3}

Now \(H^2 = 8\pi G \rho_{DE}/3 \rightarrow R_c(t) = \left(\frac{3ma}{4\pi \rho_{DE}} \right)^{1/3} \) and, if \(w = \text{const.}, \quad R_c = \left(\frac{3ma}{4\pi \rho_0} \right)^{1/3} a^{\frac{3w+4}{3}} \)

Compare with Pavlidou, Tetradis & Tomaras

\[\frac{R_c}{R_c^{(PTT)}} = \left(\frac{|3w + 1|}{2} \right)^{1/3} \approx 1 \quad \text{if } w \approx -1 \]
but now

- no ambiguities in “mass inside a sphere of radius R_c”;
- rigorous derivation of turnaround radius R_c
- important if you want to constrain w
Can express $R_c = R_c(z)$ and invert to obtain

$$\int dz \frac{w(z) + 1}{z + 1} = \ln \left[\left(\frac{3ma}{4\pi \rho} \right)^{1/3} \frac{1}{R(z)} \right]$$

If $w = \text{const.}$ reduces to

$$w(z) = -1 + \frac{\ln \left[\left(\frac{3ma}{4\pi \rho_0} \right)^{1/3} \frac{1}{R_c(z)} \right]}{\ln(z + 1)}$$

constrain w if ma and R_c are known.
Turnaround radius in ST gravity

\[ds^2 = a^2(\eta) \left[- (1 + 2\psi) d\eta^2 + (1 - 2\phi) \left(dr^2 + r^2 d\Omega^2 \right) \right], \]

\[\phi = \phi(r), \psi = \psi(r). \] Massive test particles follow timelike geodesics

\[\frac{du^a}{d\tau} + \Gamma^a_{bc} u^b u^c = 0, \]

\[u_c u^c = -1 \] and the geodesic eq. give

\[\frac{du^0}{d\tau} + \frac{a_\eta}{a} (u^0)^2 + 2\psi' u^0 u^1 + \frac{a_\eta}{a} (1 - 2\phi - 2\psi) (u^1)^2 = 0 \]

\[\frac{du^1}{d\tau} + \psi' (u^0)^2 + \frac{2a_\eta}{a} u^0 u^1 - \phi' (u^1)^2 = 0 \]
Areal radius is $R(t, r) = ar\sqrt{1 - 2\phi} \simeq ar\,(1 - \phi)$, further manipulation yields

$$\frac{d^2 R}{dt^2} = \left[\ddot{a}r + \frac{\dot{a}u^1}{au^0} + \frac{1}{au^0} \frac{d}{d\tau} \left(\frac{u^1}{u^0} \right) \right] (1 - \phi)$$

Criterion locating the (unique) turnaround radius is $d^2 R/ dt^2 = 0$, which becomes

$$\ddot{a}r - \frac{\psi'}{a} = 0$$
In terms of the *areal* turnaround radius,

\[R_c = a(t)r_c [1 - \phi(r_c)] \]

or, using the gravitational slip \(\xi \equiv (\phi - \psi) / \phi \),

\[\ddot{a} R_c (1 + \phi_c) - \phi_c' (1 - \xi_c) + \phi_c \xi_c' = 0 \]
Conclusions

- Turnaround radius is an opportunity to test gravity and the ΛCDM model.
- Split M_H for spherical perturbations of FLRW \rightarrow rigorous derivation of R_c, small correction, much needed clarification of “mass”.
- In modified gravity, no accepted M_H, use criterion $\ddot{R} = 0 \rightarrow$ eq. for R_c in ST gravity.
- Is it important? Astronomers claim that the upper bound on R_c in GR is exceeded by far in two galaxy groups (Lee et al. 2015, Astrophys. J. 815, 43; Lee, arXiv:1603.06672). Wait and see!
THANK YOU