

Max Planck - University of Ottawa Centre for Extreme and Quantum Photonics

Canada Excellence Research Chairs

Chaires d'excellence en recherche du Canada

Towards a waveguide source of polarization-entangled photons: Photon pair generation in fiber microcouplers

Xinru Cheng¹, Lambert Giner¹, Chams Baker¹, Jefferson Flórez¹, Duncan G. England², Philip J. Bustard², Benjamin J. Sussman², Xiaoyi Bao¹, Jeff S. Lundeen¹

> 1Department of Physics, University of Ottawa, 25 Templeton Street, Ottawa, Ontario, K1N 6N5 Canada 2National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6 Canada

CAP Congress, June 15, 2016

Introduction

- Quantum optical computer
	- Need source of entangled photon pairs
- Polarization entanglement example:
	- For singlet state: $|H_1V_2\rangle |V_1H_2\rangle$

if measure photon 1 to be H,

know photon 2 is in V

J. L. O'Brien, *Science* **318**, 1567 (2007);

Introduction

- Integrate photonics: microchips^{1,2}
	- mostly using free-space, off-chip photon source: the number of photons carried by the device is limited by the mismatch between the generated modes and modes of the chip
- Advantage of a fiber-based source:

Matthews, J. C. F. et al. Nat. Photon. (2009).

can avoid mode mismatch, reduce loss^{3,4}

photons are generated in fundamental mode of fiber, well-matched

with waveguide mode of optical chips 1. Matthews, J. C. F. et al. *Nat. Photon*. **3**, 346–350 (2009).

-
- 2. Silverstone, J. et al. *Nat. Photon*. **8**, 104–108 (2014).
- 3 3. K. Garay-Palmett, et al. *Opt. Express* **15**, 14,870–14,886 (2007).
- 4. B. Smith, et al. *Opt. Express* **17**, 23589-23602 (2009).

1eous tour-way
Comunis Spontaneous four-wave mixing (SFWM)

• Phasematching:

Achieve energy and momentum conservation

Microcoupler

Structure:

10cm long uniform interaction region with 1 micron diameter;

fabricated with two identical single mode fibers (SMFs) heated and stretched while kept in contact

- Coupling of 4 modes in 2 cores minimum number of modes required for entanglement
- Different indices for each mode

Simulation: effective index vs. wavelength

Effective index vs. wavelength for microcoupler *n(λ)*

Simulation: effective index vs. wavelength

Effective index vs. wavelength for microcoupler *n(λ)*

Phasematching contour plot

7

Frequency splitting vs. pump frequency

$$
\Delta k = k_{\rm x,o} + k_{\rm x,o} - k_{\rm y,o} - k_{\rm y,o} = 0
$$

- Three frequencies in phasematching contour plot: *ωs* and *ωi* split symmetrically from *ω^p*
- Need to find *ωs-ωp* for each possible phasematching situation for microcoupler

Phasematching

- **28** combinations allowed for microcoupler: all cases where only one mode is different from the other three cannot happen¹
- for example: $x,e + y,o \rightarrow x,e + y,o$ is allowed,

but not $x,e + y,o \longrightarrow x,e + x,e$

$$
\Delta k = k_{\rm x,o} + k_{\rm y,o} - k_{\rm x,e} - k_{\rm y,e} = 0
$$

Entanglement possible: If these two processes below produce photons at the same wavelength, we will get entanglement:

Phasematching

- **28** combinations allowed for microcoupler: all cases where only one mode is different from the other three cannot happen¹
- for example: $x,e + y,o \rightarrow x,e + y,o$ is allowed,

but not
$$
x,e + y,o \longrightarrow x,e + x,e
$$

$$
\Delta k = k_{\rm x,o} + k_{\rm y,o} - k_{\rm x,e} - k_{\rm y,e} = 0
$$

Entanglement possible: If these two processes below produce photons at the same wavelength, we will get entanglement: $YQ + VQ - YQ + VQ$

$$
\begin{vmatrix} \text{xc} \cdot \text{yc} & -\text{xc} \cdot \text{yc} \\ \text{xo+ye} & -\text{ye+xo} \end{vmatrix}
$$

Phasematching

- **28** combinations allowed for microcoupler: all cases where only one mode is different from the other three cannot happen¹
- for example: $x,e + y,o \rightarrow x,e + y,o$ is allowed,

but not
$$
x,e + y,o \longrightarrow x,e + x,e
$$

$$
\Delta k = k_{\rm x,o} + k_{\rm y,o} - k_{\rm x,e} - k_{\rm y,e} = 0
$$

Entanglement possible: If these two processes below produce photons at the same wavelength, we will get entanglement: xe+yo—>xe+yo

xo+ye—>ye+xo

Input state is like the Singlet State: |xe yo>+|xo ye>, if measure even photon to be x, know odd photon is y

⁸ 1. G.Agrawal, *Nonlinear Fiber Optics* (2013).

OR

Microcoupler with 1 micron diameter, 10cm interaction length

Wavelength (nm)

Pump power dependence of 645nm signal peak

Intensity vs. input power, 645nm 3000ms Avg100 frames

Quadratic power dependence as expected for photons created via SFWM (would be linear if due to Raman noise)

or Extreme and Quantum Pl

SFWM photon pair: histogram data

SFWM photon pair: histogram data

Analyzed polarization of signal and idler photons: orthogonal with overlap = 0.1738

Changing pump polarization angle:

Pump polarization dependence: 90-degree periodicity - consistent with orthogonally polarized pump photons | The 13

- Observed SFWM photon pair at 645nm and 1053nm in 1-microndiameter microcoupler, from an xy —> xy phasematching process
- Goal: generation of polarization entangled photon pairs with fiberbased SFWM source

Next steps:

SEM images of 1um microcoupler, courtesy of Sebastian Schulz

- Solving phasematching with effective index simulation results to predict signal and idler wavelengths of SFWM photons
- Testing new 7 micron coupler for more SFWM peaks from different phasematching processes

Introduction

- Observed SFWM photon pair at 645nm and 1053nm in 1-microndiameter microcoupler, from an xy —> xy phasematching process
- Goal: generation of polarization entangled photon pairs with fiberbased SFWM source

Next steps:

SEM images of 1um microcoupler, courtesy of Sebastian Schulz

- Solving phasematching with effective index simulation results to predict signal and idler wavelengths of SFWM photons
- Testing new 7 micron coupler for more SFWM peaks from different phasematching processes Thank y

References

- 1. Matthews, J. C. F. et al. *Nat. Photon*. **3**, 346–350 (2009).
- 2. Silverstone, J. et al. *Nat. Photon.* **8**, 104–108 (2014).
- 3. K. Garay-Palmett, et al. *Opt. Express* **15**, 14,870–14,886 (2007).
- 4. B. Smith, et al. *Opt. Express* **17**, 23589-23602 (2009).
- 5. G.Agrawal, Chapter 10 Four-Wave Mixing, *Nonlinear Fiber Optics*, Fifth Edition 397-456 (2013).
- 6. C. Baker, M. Rochette, *Journal of Lightwave Technology*, **31**, 1, 171-176 (2013).

Phasematching processes allowed with xy —>xy for microcoupler

4 modes: 2 polarization (x,y) 2 spatial (even, odd)

- 7 allowed cases with orthogonally polarized pump photons
- Most likely when all photons have the same even/odd modes?

$$
\Delta k = k_{\rm x,o} + k_{\rm y,o} - k_{\rm x,e} - k_{\rm y,e} = 0
$$

Simulation: effective index vs. wavelength

Effective index vs. wavelength for microcoupler *n(λ)*

Simulation: effective index vs. wavelength

Effective index vs. wavelength for microcoupler *n(λ)*

500 nm

1
2
3
4

 $\overline{2}$

Ey

wl(59)=0.5 1 Effective mode index=1.4243 (1)
Surface: Tangential boundary mode electric field, x compogent (V/m)

 ∞

 \circ

 -1

 $1.2\,$

 $\mathbf{1}$

 0.8

 0.6

 0.4

 0.2

 -0.8

 $\overline{2}$

1.8

1.6

 1.4

 1.2

 \vert 1

 $\frac{1}{2}$ 0.8

0.6 $0.4\,$

 0.2

 \circ

500 nm New tolerance

 \times

2

4

1

 \times \leftarrow $\times10^5$ wl(59)=0.5 1 Effective mode index=1.4243 (2)
Surface:-Tangential-boundary mode electric field,-x compogent (V/m) **OO**

 \times

 $\times10^5$

 $\times10^5$

Polarization tomography analysis of SFWM photon pair

- Single-photon polarization tomography of signal and idler photon:
- Density matrices from APD data:

- Find Stokes vectors, normalize and extend to pure states; *how orthogonal are the two polarization states?*
	- \rightarrow find overlap between the two (if overlap = 0, orthogonal)

Polarization tomography analysis of SFWM photon pair

Single-photon polarization tomography of signal and idler photon:

- Find Stokes vectors, normalize and extend to pure states; *how orthogonal are the two polarization states?*
	- \rightarrow find overlap between the two (if overlap = 0, orthogonal)

Polarization tomography analysis of SFWM photon pair

Single-photon polarization tomography of signal and idler photon:

- Find Stokes vectors, normalize and extend to pure states; *how orthogonal are the two polarization states?*
	- \rightarrow find overlap between the two (if overlap = 0, orthogonal)

New microcoupler - 7 micron in diameter

• fabrication data: approximate coupling length=0.36mm (for even/odd modes) and beat length~=24mm (for birefringent modes)

- prediction: expect to see fringes from even and odd spatial modes on spectrometer (5nm spacing);
- ‣ birefringent mode splittings 50nm apart