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The Higgs mass, the hierarchy problem, and the pursuit of naturalness

The Higgs mass

The Standard Model (SM) Lagrangian contains a Higgs mass term

LSM ⊃ −
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hh
2

and also some Higgs couplings
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The Higgs mass, the hierarchy problem, and the pursuit of naturalness

We can use these couplings to draw the following diagrams

h h

t

h h

W

h h

h

each of which contribute to the mass of the Higgs boson

δm2
h ∼

∫ Λ d4k

k2
∼ Λ2.

The Higgs mass is quadratically sensitive to the cutoff Λ!
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The Higgs mass, the hierarchy problem, and the pursuit of naturalness

The hierarchy problem

Imagine a world where the SM is all that there is up to the scale where
quantum gravity becomes important. In that case we have that
Λ ≈ MP ≈ 1018 GeV. This leads to a tuning of one part in the

M2
P

m2
h

≈ (1018)2

(102)2
= 1032.

Are we to believe this? Is Nature this tuned?
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The Higgs mass, the hierarchy problem, and the pursuit of naturalness

The pursuit of naturalness

Field Symmetry as m→ 0 Implications

Spin 1/2 Ψ→ e iαγ5Ψ δm ∝ m
−mΨ̄Ψ (chiral symmetry) natural

Spin 1 Aµ → Aµ − 1
e ∂µα δm ∝ m

1
2m

2AµA
µ (gauge invariance) natural

Spin 0
None

δm ∝ Λ
−1

2m
2φ2 unnatural

“Perhaps this is the reason why there seem to be no elementary scalar
fields in Nature.” - An Introduction to Quantum Field Theory, Peskin and
Schroeder

6



Beyond the Standard Model (BSM) solutions including neutral naturalness

The most well known solution: Supersymmetry

Supersymmetry is a symmetry linking bosons to fermions capable of
solving the hierarchy problem. Every SM particle has a partner particle.
Most importantly, quadratic contributions to scalar masses cancel between
supersymmetric partner particles.

h h

t

h h

t̃

However, natural Supersymmetry appears to be on thin ice.
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Beyond the Standard Model (BSM) solutions including neutral naturalness
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MSUGRA/CMSSM 0-3 e, µ /1-2 τ 2-10 jets/3 b Yes 20.3 m(q̃)=m(g̃) 1507.055251.85 TeVq̃, g̃

q̃q̃, q̃→qχ̃
0
1 0 2-6 jets Yes 3.2 m(χ̃

0
1)=0 GeV, m(1st gen. q̃)=m(2nd gen. q̃) ATLAS-CONF-2015-062980 GeVq̃

q̃q̃, q̃→qχ̃
0
1 (compressed) mono-jet 1-3 jets Yes 3.2 m(q̃)-m(χ̃

0
1 )<5 GeV To appear610 GeVq̃

q̃q̃, q̃→q(ℓℓ/ℓν/νν)χ̃
0
1

2 e, µ (off-Z) 2 jets Yes 20.3 m(χ̃
0
1)=0 GeV 1503.03290820 GeVq̃

g̃g̃, g̃→qq̄χ̃
0
1 0 2-6 jets Yes 3.2 m(χ̃

0
1)=0 GeV ATLAS-CONF-2015-0621.52 TeVg̃

g̃g̃, g̃→qqχ̃
±
1→qqW±χ̃01 1 e, µ 2-6 jets Yes 3.3 m(χ̃

0
1)<350 GeV, m(χ̃

±
)=0.5(m(χ̃

0
1)+m(g̃)) ATLAS-CONF-2015-0761.6 TeVg̃

g̃g̃, g̃→qq(ℓℓ/ℓν/νν)χ̃
0
1

2 e, µ 0-3 jets - 20 m(χ̃
0
1)=0 GeV 1501.035551.38 TeVg̃

g̃g̃, g̃→qqWZχ̃
0
1 0 7-10 jets Yes 3.2 m(χ̃

0
1) =100 GeV 1602.061941.4 TeVg̃

GMSB (ℓ̃ NLSP) 1-2 τ + 0-1 ℓ 0-2 jets Yes 20.3 tanβ >20 1407.06031.63 TeVg̃

GGM (bino NLSP) 2 γ - Yes 20.3 cτ(NLSP)<0.1 mm 1507.054931.34 TeVg̃

GGM (higgsino-bino NLSP) γ 1 b Yes 20.3 m(χ̃
0
1)<950 GeV, cτ(NLSP)<0.1 mm, µ<0 1507.054931.37 TeVg̃

GGM (higgsino-bino NLSP) γ 2 jets Yes 20.3 m(χ̃
0
1)<850 GeV, cτ(NLSP)<0.1 mm, µ>0 1507.054931.3 TeVg̃

GGM (higgsino NLSP) 2 e, µ (Z) 2 jets Yes 20.3 m(NLSP)>430 GeV 1503.03290900 GeVg̃

Gravitino LSP 0 mono-jet Yes 20.3 m(G̃)>1.8 × 10−4 eV, m(g̃)=m(q̃)=1.5 TeV 1502.01518865 GeVF1/2 scale

g̃g̃, g̃→bb̄χ̃
0
1 0 3 b Yes 3.3 m(χ̃

0
1)<800 GeV ATLAS-CONF-2015-0671.78 TeVg̃

g̃g̃, g̃→tt̄χ̃
0
1

0-1 e, µ 3 b Yes 3.3 m(χ̃
0
1)=0 GeV To appear1.76 TeVg̃

g̃g̃, g̃→bt̄χ̃
+
1 0-1 e, µ 3 b Yes 20.1 m(χ̃

0
1)<300 GeV 1407.06001.37 TeVg̃

b̃1b̃1, b̃1→bχ̃
0
1 0 2 b Yes 3.2 m(χ̃

0
1)<100 GeV ATLAS-CONF-2015-066840 GeVb̃1

b̃1b̃1, b̃1→tχ̃
±
1 2 e, µ (SS) 0-3 b Yes 3.2 m(χ̃

0
1)=50 GeV, m(χ̃

±
1 )= m(χ̃

0
1)+100 GeV 1602.09058325-540 GeVb̃1

t̃1 t̃1, t̃1→bχ̃
±
1 1-2 e, µ 1-2 b Yes 4.7/20.3 m(χ̃

±
1 ) = 2m(χ̃

0
1), m(χ̃

0
1)=55 GeV 1209.2102, 1407.0583117-170 GeVt̃1 200-500 GeVt̃1

t̃1 t̃1, t̃1→Wbχ̃
0
1 or tχ̃

0
1

0-2 e, µ 0-2 jets/1-2 b Yes 20.3 m(χ̃
0
1)=1 GeV 1506.08616, ATLAS-CONF-2016-00790-198 GeVt̃1 205-715 GeVt̃1 745-785 GeVt̃1

t̃1 t̃1, t̃1→cχ̃
0
1 0 mono-jet/c-tag Yes 20.3 m(t̃1)-m(χ̃

0
1 )<85 GeV 1407.060890-245 GeVt̃1

t̃1 t̃1(natural GMSB) 2 e, µ (Z) 1 b Yes 20.3 m(χ̃
0
1)>150 GeV 1403.5222150-600 GeVt̃1

t̃2 t̃2, t̃2→t̃1 + Z 3 e, µ (Z) 1 b Yes 20.3 m(χ̃
0
1)<200 GeV 1403.5222290-610 GeVt̃2

t̃2 t̃2, t̃2→t̃1 + h 1 e, µ 6 jets + 2 b Yes 20.3 m(χ̃
0
1)=0 GeV 1506.08616320-620 GeVt̃2

ℓ̃L,R ℓ̃L,R, ℓ̃→ℓχ̃01 2 e, µ 0 Yes 20.3 m(χ̃
0
1)=0 GeV 1403.529490-335 GeVℓ̃

χ̃+
1
χ̃−
1 , χ̃

+
1→ℓ̃ν(ℓν̃) 2 e, µ 0 Yes 20.3 m(χ̃

0
1)=0 GeV, m(ℓ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1403.5294140-475 GeVχ̃±

1

χ̃+
1
χ̃−
1 , χ̃

+
1→τ̃ν(τν̃) 2 τ - Yes 20.3 m(χ̃

0
1)=0 GeV, m(τ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1407.0350355 GeVχ̃±

1

χ̃±
1
χ̃0
2→ℓ̃Lνℓ̃Lℓ(ν̃ν), ℓν̃ℓ̃Lℓ(ν̃ν) 3 e, µ 0 Yes 20.3 m(χ̃

±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, m(ℓ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1402.7029715 GeVχ̃±

1
, χ̃

0

2

χ̃±
1
χ̃0
2→Wχ̃

0
1Zχ̃

0
1

2-3 e, µ 0-2 jets Yes 20.3 m(χ̃
±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, sleptons decoupled 1403.5294, 1402.7029425 GeVχ̃±

1
, χ̃

0

2

χ̃±
1
χ̃0
2→Wχ̃

0
1h χ̃

0
1, h→bb̄/WW/ττ/γγ e, µ, γ 0-2 b Yes 20.3 m(χ̃

±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, sleptons decoupled 1501.07110270 GeVχ̃±

1
, χ̃

0

2

χ̃0
2
χ̃0
3, χ̃

0
2,3 →ℓ̃Rℓ 4 e, µ 0 Yes 20.3 m(χ̃

0
2)=m(χ̃

0
3), m(χ̃

0
1)=0, m(ℓ̃, ν̃)=0.5(m(χ̃

0
2)+m(χ̃

0
1)) 1405.5086635 GeVχ̃0

2,3

GGM (wino NLSP) weak prod. 1 e, µ + γ - Yes 20.3 cτ<1 mm 1507.05493115-370 GeVW̃

Direct χ̃
+
1
χ̃−
1 prod., long-lived χ̃

±
1 Disapp. trk 1 jet Yes 20.3 m(χ̃

±
1 )-m(χ̃

0
1)∼160 MeV, τ(χ̃

±
1 )=0.2 ns 1310.3675270 GeVχ̃±

1

Direct χ̃
+
1
χ̃−
1 prod., long-lived χ̃

±
1 dE/dx trk - Yes 18.4 m(χ̃

±
1 )-m(χ̃

0
1)∼160 MeV, τ(χ̃

±
1 )<15 ns 1506.05332495 GeVχ̃±

1

Stable, stopped g̃ R-hadron 0 1-5 jets Yes 27.9 m(χ̃
0
1)=100 GeV, 10 µs<τ(g̃)<1000 s 1310.6584850 GeVg̃

Metastable g̃ R-hadron dE/dx trk - - 3.2 m(χ̃
0
1)=100 GeV, τ>10 ns To appear1.54 TeVg̃

GMSB, stable τ̃, χ̃
0
1→τ̃(ẽ, µ̃)+τ(e, µ) 1-2 µ - - 19.1 10<tanβ<50 1411.6795537 GeVχ̃0

1

GMSB, χ̃
0
1→γG̃, long-lived χ̃

0
1

2 γ - Yes 20.3 1<τ(χ̃
0
1)<3 ns, SPS8 model 1409.5542440 GeVχ̃0

1

g̃g̃, χ̃
0
1→eeν/eµν/µµν displ. ee/eµ/µµ - - 20.3 7 <cτ(χ̃

0
1)< 740 mm, m(g̃)=1.3 TeV 1504.051621.0 TeVχ̃0

1

GGM g̃g̃, χ̃
0
1→ZG̃ displ. vtx + jets - - 20.3 6 <cτ(χ̃

0
1)< 480 mm, m(g̃)=1.1 TeV 1504.051621.0 TeVχ̃0

1

LFV pp→ν̃τ + X, ν̃τ→eµ/eτ/µτ eµ,eτ,µτ - - 20.3 λ′
311

=0.11, λ132/133/233=0.07 1503.044301.7 TeVν̃τ

Bilinear RPV CMSSM 2 e, µ (SS) 0-3 b Yes 20.3 m(q̃)=m(g̃), cτLS P<1 mm 1404.25001.45 TeVq̃, g̃

χ̃+
1
χ̃−
1 , χ̃

+
1→Wχ̃

0
1, χ̃

0
1→eeν̃µ, eµν̃e 4 e, µ - Yes 20.3 m(χ̃

0
1)>0.2×m(χ̃

±
1 ), λ121,0 1405.5086760 GeVχ̃±

1

χ̃+
1
χ̃−
1 , χ̃

+
1→Wχ̃

0
1, χ̃

0
1→ττν̃e, eτν̃τ 3 e, µ + τ - Yes 20.3 m(χ̃

0
1)>0.2×m(χ̃

±
1 ), λ133,0 1405.5086450 GeVχ̃±

1

g̃g̃, g̃→qqq 0 6-7 jets - 20.3 BR(t)=BR(b)=BR(c)=0% 1502.05686917 GeVg̃

g̃g̃, g̃→qqχ̃
0
1, χ̃

0
1 → qqq 0 6-7 jets - 20.3 m(χ̃

0
1)=600 GeV 1502.05686980 GeVg̃

g̃g̃, g̃→t̃1t, t̃1→bs 2 e, µ (SS) 0-3 b Yes 20.3 1404.2500880 GeVg̃

t̃1 t̃1, t̃1→bs 0 2 jets + 2 b - 20.3 1601.07453320 GeVt̃1

t̃1 t̃1, t̃1→bℓ 2 e, µ 2 b - 20.3 BR(t̃1→be/µ)>20% ATLAS-CONF-2015-0150.4-1.0 TeVt̃1

Scalar charm, c̃→cχ̃
0
1 0 2 c Yes 20.3 m(χ̃

0
1)<200 GeV 1501.01325510 GeVc̃

Mass scale [TeV]10−1 1

√
s = 7, 8 TeV

√
s = 13 TeV

ATLAS SUSY Searches* - 95% CL Lower Limits
Status: March 2016

ATLAS Preliminary√
s = 7, 8, 13 TeV

*Only a selection of the available mass limits on new
states or phenomena is shown.
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Beyond the Standard Model (BSM) solutions including neutral naturalness

Generally, the constraints on Supersymmetry are severe because the
superpartners are charged under the SM gauge groups. This leads to large
production cross sections at the LHC.

t̃

t̃∗

g

g

t̃

t̃∗

g

g
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Beyond the Standard Model (BSM) solutions including neutral naturalness

Neutral Naturalness

If we can somehow construct a model where the partner particles are
neutral under the SM gauge groups then we could avoid experimental
constraints. This is the idea of neutral naturalness. These types of theories
only tend to solve the “little” hierarchy problem: they keep the Higgs mass
natural only up to the highest scales probed by the LHC.
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The original Twin Higgs

The Twin Higgs

Start with a global SU(4) symmetry and consider a Higgs field H
transforming as a fundamental under it. Next, write the SU(4) symmetric
potential

VSU(4)(H) = −µ2H†H + λ(H†H)2

where µ2 > 0. This is the famous “Mexican hat” potential.
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The original Twin Higgs

The potential is minimized by a non-zero vev

〈H〉 ≡ f =
µ√
2λ

and spontaneous symmetry breaking occurs. Here SU(4) is broken to
SU(3) which gives 7 Goldstone bosons. As we will see, the Higgs will
ultimately be identified as one of these Goldstone bosons.
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The original Twin Higgs

Think about the Higgs as an excitation about the bottom the trough.

f

Right now the bottom of the trough is flat so the Higgs is (more generally
Goldstone bosons are) massless.
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The original Twin Higgs

To give the Higgs a mass, explicitly break the SU(4) by gauging a
SU(2)A × SU(2)B subgroup. This divides the Higgs field H in two

H =

(
HA

HB

)
.

The A sector will be identified with the SM while the B sector is a
“mirror” sector. Six of the 7 Goldstone bosons are eaten by gauge fields
leaving only one left: the Higgs!
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The original Twin Higgs

This gauging gives a quadratically divergent contribution to the potential

∆V (H) =
9g2

AΛ2

64π2
H†AHA +

9g2
BΛ2

64π2
H†BHB

where gA and gB are the coupling constants for SU(2)A and SU(2)B
respectively and Λ is the cutoff. Now, enforce a discrete Z2 between the A
and the B sectors fixing gA = gB = g . Then

∆V (H) =
9g2Λ2

64π2
(H†AHA + H†BHB)

=
9g2Λ2

64π2
(H†H).

The potential accidentally preserves the original SU(4). The Higgs does
not receive a quadratically divergent contribution to its mass!
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The original Twin Higgs

However, sub-leading terms will give a SU(4) breaking contribution to the
potential

∆V���SU(4)(H) = αH†AHAH
†
BHB

where α is naturally small.
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The original Twin Higgs

The details of the vev structure depends on sign of α.

α < 0 α > 0

HA

HB

f

HA

HB
f

In either case, the bottom of the trough is now a tiny bit “wavy”. The
Higgs acquires a small mass and is now identified as a pseudo-Goldstone
boson of an approximate SU(4) symmetry.
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The original Twin Higgs

The α < 0 minimum preserves the Z2 symmetry. However this scenario is
problematic because

 it is incompatible with Higgs signal strength measurements,

 the energy scale ∼ 4πf , at which new physics needs to appear to
avoid fine-tuning, is then not much larger than in the SM.

From here on we set 〈HA〉 = v ≈ 174 GeV and attempt to maximize the
ratio f /v . To do this, we need to introduce an explicit Z2 breaking term in
the potential

V��Z2
(H) = ∆m2H†AHA.
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The original Twin Higgs

Increasing ∆m2 pushes the vev f towards the B sector.

∆m = 0

HA

HB f
Θ

∆m = ∆mmax/3

HA

HB
fΘ

∆m = 2∆mmax/3

HA

HB
fΘ

∆m = ∆mmax

HA

HB
fΘ
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The original Twin Higgs

As shown above, there is a maximum value of ∆m2 after which 〈HA〉 = 0.
By minimizing the potential, one can show that

∆m2
max = −αµ

2

2λ
.

Another interesting relation is

sin2 θ =
v2

f 2
=

1

2

(
1− ∆m2

(−αf 2)

)
≈ 1

2

(
1− ∆m2

∆m2
max

)
.

To achieve a large f /v ratio, ∆m2 needs to be tuned close to ∆m2
max .
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The original Twin Higgs

If α > 0, the vevs fall in one sector only and the minimum breaks the Z2

symmetry. However this scenario is inviable because

 soft potential terms cannot remove the zero vev from the axis,

 thus the vev must fall in the SM sector,

 which results with a massless mirror sector,

 and this is incompatible with cosmology.
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The original Twin Higgs

Recap:

 For α < 0, we need to tune ∆m2 to achieve a large ratio of vevs.

 For α > 0, one of the vevs was stuck on an axis.

Both problems are related to the shortcomings of

V��Z2
(H) = ∆m2H†AHA.

What would happen if we had terms linear in HA or HB instead? Could we
alleviate these problems?

Let’s find out!
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The spontaneous Z2 breaking Twin Higgs

The spontaneous Z2 breaking Twin Higgs

Start with an approximate global SU(4) symmetry and consider two Higgs
fields H1 and H2 each transforming as fundamentals under it. Next write
the potentials

VH1(H1) = −µ2
1H
†
1H1 + λ1(H†1H1)2 + α1H

†
1AH1AH

†
1BH1B

and

VH2(H2) = −µ2
2H
†
2H2 + λ2(H†2H2)2 + α2H

†
2AH2AH

†
2BH2B

where µ2
1 > 0, µ2

2 > 0, α1 < 0, and α2 > 0.
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The spontaneous Z2 breaking Twin Higgs

At the moment, the vev structure looks like

α1 < 0 α2 > 0

H1 A

H1 B f 1
Θ1

H2 A

H2 B
f 2Θ2

where H1 preserves the Z2 symmetry while H2 breaks it. Without loss of
generality, we assign the vev of H2 to fall in the B sector.
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The spontaneous Z2 breaking Twin Higgs

The next step is to introduce a term that connects the two Higges. This is
given by

VH1H2(H1,H2) = −BµH†1H2 + h.c.

= −Bµ(H†1AH2A + H†1BH2B) + h.c..

This term transmits the Z2 breaking effects from the broken to the
unbroken sector. For example, setting H2B to its vev results with the term

H†1B 〈H2B〉+ h.c.

which is an effective tadpole for H1B , driving the H1 vev towards the B
sector. Additionally, setting H1A to its vev results with the term

H†2A 〈H1A〉+ h.c.

which is an effective tadpole for H2A, lifting its vev off the axis.
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The spontaneous Z2 breaking Twin Higgs

The effects of these tadpole terms can be seen below.

Bµ = 0

H1 A

H1 B f 1
Θ1

Bµ > 0

H1 A

H1 B f 1
Θ1

H2 A

H2 B
f 2Θ2

H2 A

H2 B f 2

Θ2

Contours in the H1A, H1B plane drawn with H2A,H2B set to their vevs,
and vice versa.
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The spontaneous Z2 breaking Twin Higgs

In general, the vev structure is more complicated in this model than in the
original Twin Higgs. Defining

Ω ≡ −α1

α2

(
f1
f2

)4

we get two possible vev structures.

Ω < 1

<H2

<H1

<H1

<H2

B>

B>

A>

A>

0 0.2 0.4 0.6 0.8 1

100

200

300

400

500

600

700

BΜ�BΜ
max

v
i
@G
e
V
D

Ω > 1

<H2

<H1

<H1

<H2

B>

B>

A>

A>

0.0 0.1 0.2 0.3 0.4

100

200

300

400

500

600

700

BΜ @TeV
2
D

v
i
@G
e
V
D

We consider the case Ω < 1.
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The spontaneous Z2 breaking Twin Higgs

Analogous to the Twin Higgs, there is a maximum value of Bµ after which
〈H1A〉 = 〈H2A〉 = 0. By minimizing the potential, one can show

Bmax
µ ≈ − α1f

3
1

f2(1− Ω)
.

Another interesting result is that in the small angles approximation the
ratio of vevs v2/f 2

1 can be computed

v2

f 2
1

≈ 3

8(1 + g(Ω))

(
1 +

(
−α2

α1

)−1/2

Ω3/2

)(
1− Bµ

Bmax
µ

)
≡ C (−α2/α1,Ω)

(
1− Bµ

Bmax
µ

)
where

g(Ω) =
1

16
(15Ω2 + 18Ω− 1).
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The spontaneous Z2 breaking Twin Higgs

We can compare this ratio of vevs with the Twin Higgs result.

Twin Higgs

-Α2�Α1 = 0.1

-Α2�Α1 = 0.2

-Α2�Α1 = 1

-Α2�Α1 = 5

-Α2�Α1 = ¥

0 0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

0.5

W

C
H-Α

2
�Α 1

,
W
L

For most of the parameter space, if the two models have the same ratio of
vevs, then the spontaneously Z2 breaking Twin Higgs is less tuned.
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The spontaneous Z2 breaking Twin Higgs

To show this concretely, we compute the tuning in a more systematic
fashion.

For the original Twin Higgs

 Four parameters: µ2, λ, α, and ∆m2

 Set λ = 1 and use µ2, α, and ∆m2 to get correct Higgs mass, SM
vev, and to set the ratio f /v to a given value.

For the spontaneous Z2 breaking Twin Higgs

 Seven parameters: µ2
1, µ2

2, λ1, λ2, α1, α2, and Bµ

 Set λ1 = λ2 = 1 and use µ2
1, α1, and Bµ to get correct Higgs mass,

SM vev, and to set the ratio f1/v to a given value.

 Two free parameters left: µ2
2 and α2. We scan the parameter space in

terms of µ2
2/µ

2
1 and −α2/α1.
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The spontaneous Z2 breaking Twin Higgs

The tuning can be computed in the following way.

For the Twin Higgs

 Define

∆TH =

∣∣∣∣∂(v2/f 2)

∂ ln ∆m2

∣∣∣∣ .
 The tuning is then ∆−1

TH .

 Setting f /v = 3 gives a benchmark tuning of 27.7%.

For the spontaneous Z2 breaking Twin Higgs

 Define

∆Spontaneous = Max

{∣∣∣∣∂(v2/f 2
1 )

∂ lnBµ

∣∣∣∣ , ∣∣∣∣∂(v2/f 2
1 )

∂ lnµ2
2

∣∣∣∣ , ∣∣∣∣∂(v2/f 2
1 )

∂ lnλ2

∣∣∣∣ , ∣∣∣∣∂(v2/f 2
1 )

∂ lnα2

∣∣∣∣} .
 The tuning is then ∆−1

Spontaneous .
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The spontaneous Z2 breaking Twin Higgs

Setting f1/v = 3 gives a tuning in our model of
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The spontaneous Z2 breaking Twin Higgs

Comparing this to the Twin Higgs gives a ratio of tunings of
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Conclusion

Conclusion

 If Nature were only the SM, then it would be fine-tuned.

 However, BSM physics can potentially reduce this tuning. A prime
candidate theory is Supersymmetry.

 But current experimental searches are placing strong limits on
supersymmetric partner particles.

 Naturalness can still be achieved with partner particles not charged
under the SM gauge groups.

 The Twin Higgs is perhaps the most famous example of this.

 The spontaneously Z2 breaking Twin Higgs attempts to improve the
tuning even further.
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Back up slides
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The resulting 125 GeV Higgs boson turns out to be more “A”-like in the
spontaneous Z2 breaking Twin Higgs than in the original Twin Higgs. To
see this we decompose the Higgs as

h = ah1A + bh2A + ch1B + dh2B

where h1A is defined as

H0
1A = (v1A + (h1A + iA1A)/

√
2)

and identically for the other hi ’s. We then define the parameter

ΘB ≡ c2 + d2

which measures how much the Higgs is “B”-like.
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Twin Higgs

Μ2 = 1200 GeV
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We have already discussed how quadratically divergent contributions to
the Higgs mass from the gauge bosons cancel. However, we have not
examined the Yukawa sector, and, in particular, the top quark. One
possible way to couple the top quark to the Higgs in the Twin Higgs is

Ltop = −yt(q̄AH̃At
c
A + q̄BH̃Bt

c
B) + h.c.

where qB and tcB are mirror sector fermions. Notice that this term is Z2

symmetric; this is enough to ensure the cancellation of quadratic
divergences.

h h

t

h h

t̃

In our model, we choose the top to couple to H1 only and to follow the
same structure as above.
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The one-loop leading radiative corrections for the original Twin Higgs are

δµ2 =
1

16π2

(
6y2

t −
9

4
g2 − 3

4
g ′

2 − 10λ− 2α

)
Λ2,

δλ =
1

16π2

(
6y4

t −
9

8
g4 − 3

4
g2g ′

2 − 3

8
g ′

4 − 32λ2 − 8λα− 2α2

)
ln

Λ

f
,

δα =
1

16π2

(
−12y4

t +
9

4
g4 +

3

2
g2g ′

2
+

3

4
g ′

4 − 24λα

)
ln

Λ

f
,

δ∆m2 =
1

16π2
(−4λ+ 4α) ∆m2 ln

Λ

f
.
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In our case, the one-loop leading radiative corrections are

δµ2
1 =

1

16π2

(
6y2

t −
9

4
g2 − 3

4
g ′

2 − 10λ1 − 2α1

)
Λ2,

δλ1 =
1

16π2

(
6y4

t −
9

8
g4 − 3

4
g2g ′

2 − 3

8
g ′

4 − 32λ2
1 − 8λ1α1 − 2α2

1

)
ln

Λ

f1
,

δα1 =
1

16π2

(
−12y4

t +
9

4
g4 +

3

2
g2g ′

2
+

3

4
g ′

4 − 24λ1α1

)
ln

Λ

f1
,

δµ2
2 =

1

16π2

(
−9

4
g2 − 3

4
g ′

2 − 10λ2 − 2α2

)
Λ2,

δλ2 =
1

16π2

(
−9

8
g4 − 3

4
g2g ′

2 − 3

8
g ′

4 − 32λ2
2 − 8λ2α2 − 2α2

2

)
ln

Λ

f2
,

δα2 =
1

16π2

(
9

4
g4 +

3

2
g2g ′

2
+

3

4
g ′

4 − 24λ2α2

)
ln

Λ

f2
,

δBµ = 0,

δκ =
1

16π2

(
−9

4
g4 − 3

2
g2g ′

2 − 3

4
g ′

4
)

ln
Λ

f1
.
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The parameter κ is the coefficient for the operator

−κ(H†1AH1AH
†
2AH2A + H†1BH1BH

†
2BH2B).
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Before, we set the ratio of vevs and then found the tuning. But we can
also do the opposite. If we set the tuning to 20% then we get f /v = 3.42
in the original Twin Higgs.

42



Back up slides

Setting the tuning to 20% gives f1/v in our model of
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Comparing this to the Twin Higgs gives (f1/v)/(f /v) of
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