12–17 Jun 2016
University of Ottawa
America/Toronto timezone
Welcome to the 2016 CAP Congress! / Bienvenue au congrès de l'ACP 2016!

Experiment friendly entanglement witness for multipartite entanglement in atomic frequency combs

14 Jun 2016, 19:18
2m
SITE Atrium (University of Ottawa)

SITE Atrium

University of Ottawa

Poster (Student, In Competition) / Affiche (Étudiant(e), inscrit à la compétition) Division of Atomic, Molecular and Optical Physics, Canada / Division de la physique atomique, moléculaire et photonique, Canada (DAMOPC-DPAMPC) DAMOPC Poster Session with beer / Session d'affiches avec bière DPAMPC

Speaker

Parisa Zarkeshian (University of Calgary)

Description

Atomic frequency comb, an atomic ensemble with comb shaped optical transition, is useful for multimode photonic quantum memory where a photon is absorbed collectively over the teeth of the comb resulting in a multipartite entangled state. The teeth of the comb constitute the individual subsystems participating in the entanglement. Since each tooth of the comb consists of a macroscopic number of atoms (typically several thousand), the atomic frequency comb (AFC) system presents an entirely different class of entangled state, which we call the colossal entangled state, i.e., multipartite entanglement between macroscopic systems.

In this work we propose an experimentally realizable witness and entanglement measure for the colossal entanglement in the AFC systems which is the entanglement between the teeth of the AFC. The witness is achieved in two steps. First we determine the minimum number of teeth coherently absorbing the photon, i.e., the coherence depth, from the signal to noise ratio of the light coming out of the AFC system. We argue that coherence depth is synonymous to entanglement depth, i.e., the minimum number of provably entangled systems, for the case when exactly one photon is present in the system. However, higher photon number component in the photonic states can cause differences between the coherence depth and the entanglement depth. We rectify this problem by estimating the probabilities P0 of no photon and P1 of having exactly one photon in the AFC system and using the bound on P1 for a given P0 and entanglement depth derived in [Hass et al. 2014]. Our method requires no prior knowledge of the number of teeth and is scalable. Furthermore, the method uses only macroscopic quantities to estimate the entanglement in the system, hence, is a suitable choice for the experimental demonstration of genuine multipartite entanglement. We have numerical and experimental results to support our entanglement witness.

Primary author

Parisa Zarkeshian (University of Calgary)

Co-authors

Dr Christoph Simon (University of Calgary) Dr Khabat Heshami (National Research Council of Canada) Niel Sinclair (University of Calgary) Dr Sandeep Goyal (University of Calgary) Dr Wolfgang Tittel (University of Calgary)

Presentation materials

There are no materials yet.