ATLAS Status Report
Operations, Physics & Upgrade Planning

P. Krieger, University of Toronto
(on behalf of the ATLAS Canada Collaboration)
ATLAS Canada Collaboration

<table>
<thead>
<tr>
<th>Founded in 1992:</th>
<th>M. Lefebvre, UVic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R. McPherson, IPP/UVic 2007-2015</td>
</tr>
</tbody>
</table>

Current Management

Spokesperson, PI (2015 –):	P. Krieger, U of T
Deputy:	M. Vincter, Carleton
Physics Coord:	A. Warburton, McGill
Computing Coord:	R. Tafirout, TRIUMF

- 38 University/Lab faculty (34.7 FTE) [details in backup slides]
- 27 Postdocs, 68 GS (Feb 2016), ≈ 25 UG students/year
- Plus engineers and technicians (some MRS funded)
- Group includes 5 IPP Research Scientists (4 FTE)
Canadian ATLAS Leadership

• Canadians are present in all levels of ATLAS management and coordination:
 – Some prominent examples below
 – Also many roles in detector operations, data quality, upgrade and physics and performance sub-group coordination (not shown here):
 • Including two ATLAS Run Managers

Major (recent and present) ATLAS management / coordination roles

ATLAS Management
 • McPherson (deputy spokesperson 2015-2017)

Executive Board
 • Vetterli (pubcom chair), McPherson (at-large)

Physics coordination
 • Lister (top), Savard (Higgs), Canepa (Upgrade physics), Gingrich (MC)

Speakers Committee Advisory Board
 • Krieger, Vachon, Taylor

Publications Committee Chair
 • Vetterli

Speakers Committee Chair
 • Lefebvre

Authorship Committee Chair
 • Trigger

Publications Committee members
 • Krieger, Trigger

Computing resources management Chair
 • Vetterli
ATLAS Canada HQP Training

• ATLAS Canada has an excellent history of HQP training:
 – Current graduate student and postdoc numbers shown on previous slide
 – 67 PhDs awarded (Jan 2016), 42 with collisions (distribution below)
 – About 100 postdocs have been trained on ATLAS Canada
 – Of completed degrees / training in last 5 years*:
 • ~70% of MSc students continued to a PhD (usually in the same field)
 • ~40% PhD remained in research, ~30% went to industry, 20% became teachers
 • ~70% of postdocs remained in research, ~20% to industry

A Canadian student won one of the four 2015 ATLAS PhD Thesis Awards
The Large Hadron Collider at CERN

- The world’s highest-energy particle collider.
 - Likely to remain at the energy-frontier for at least another two decades
- Over 500 scientific ATLAS publications (see next slide)
- Higgs Boson discovery in 2012 led to 2013 Nobel Prize to Higgs and Englert (with ATLAS and CMS mentioned in the citation)
 - Investigations of Higgs properties still important and on-going
 - This will remain true to the end of the LHC/HL-LHC experimental program
- Increased energy, decreased bunch spacing for Run-2 (2015-2018):
 - Bunch spacing of 25ns (instead of 50 ns) for reduced pileup
 - 13 TeV up from 8 TeV in Run-1
 - opens a new window for searches for BSM physics
 - May increase to 14 TeV later in Run-2
 - 2016 run will be at 13 TeV
- Maximum LHC energy is 14 TeV. After that, planned improvements associated with an increase of the collision rate (luminosity):
 - The is the goal of both the Phase-I and Phase-II ATLAS Upgrades
• Most papers based on analysis of Run-1 data (2011,2012)
• A few Run-1 papers still in progress: SUSY and Exotics searches complete
• Some results from Run-2 (13 TeV) have also already been published / submitted
Cross-section Ratios 13TeV / 8TeV

At 10^{34} cm$^{-2}$ s$^{-1}$ @ 13 TeV pp the LHC produces:
- 200 Hz $W \rightarrow lv$
- 19 Hz $Z \rightarrow ll$
- 8 Hz top pair
- 0.5 Hz Higgs
Cross-section Measurements at 13 TeV

- Small 2015 data sample, but numerous results (preliminary or published)
- Cross sections: good agreement with Standard Model, but also “hints” to be explored with 2016 data
Cross-section Measurements at 13 TeV

- Small 2015 data sample, but numerous results (preliminary or published)
- Cross sections: good agreement with Standard Model, but also “hints” to be explored with 2016 data

ATLAS Preliminary

- **pp → W**
 - 7 TeV, 36 pb\(^{-1}\), PRD 85, 072004 (2012)
 - 13 TeV, 85 pb\(^{-1}\), ATLAS-CONF-2015-039

- **pp → Z / γ\(^{*}\)**
 - 7 TeV, 36 pb\(^{-1}\), PRD 85, 072004 (2012)
 - 13 TeV, 85 pb\(^{-1}\), ATLAS-CONF-2015-039

- **pp → t\(\bar{t}\)**
 - 13 TeV, 78 pb\(^{-1}\), ATLAS-CONF-2015-049

- **pp → tq**
 - 7 TeV, 4.6 fb\(^{-1}\), PRD 90, 012006 (2014)
 - 8 TeV, 20.3 fb\(^{-1}\), ATLAS-CONF-2014-007
 - ATLAS-CONF-2015-079

- **pp → H**
 - 7 TeV, 4.5 fb\(^{-1}\), arXiv:1507.04548
 - 8 TeV, 20.3 fb\(^{-1}\), arXiv:1507.04548
 - 13 TeV, 3.2 fb\(^{-1}\), ATLAS-CONF-2015-069

- **pp → ZZ**
 - 7 TeV, 4.6 fb\(^{-1}\), JHEP 03, 128 (2013)
 - 8 TeV, 20.3 fb\(^{-1}\), ATLAS-CONF-2013-020
 - 13 TeV, 3.2 fb\(^{-1}\), arXiv:1512.05314

HINT OF NEW BOSON SPARKS FLOOD OF PAPERS

In just 21 days, physicists have posted 150 papers on the arXiv preprint server about tantalizing results at the Large Hadron Collider.

P.Krieger, U of T
Institute of Particle Physics, AGM, June 12, 2016 Ottawa
Canadian Hardware Contributions to ATLAS

Main contributions to the original detector

• Hadronic Endcap calorimeter
 – Two of four wheels
• Hadronic Forward calorimeter
 – All four modules
• Liquid argon front-end electronics
 – Switched capacitor array controller chips
• Liquid argon calorimeter endcap signal feedthroughs

Other contributions to the existing detector (up to LS1)

• Beam Conditions Monitor (also used for luminosity)
• High-level trigger (HLT) processors
• MediPix / TimePix for cavern background monitoring, luminosity
• LUCID luminosity monitor and upgrade in LS1
• Diamond Beam Monitor (telescope) installed in LS1
• Inner Detector readout
LHC/ATLAS Operations 2016

- Both LHC and ATLAS operating well: fastest luminosity ramp-up in LHC history
- New peak L_{inst} record of $8.2 \times 10^{33} \text{cm}^{-2}\text{s}^{-1}$ last week
- All this in spite of the “weasel”

ATLAS Run-2 Detector Status (from May. 2016)

<table>
<thead>
<tr>
<th>Subdetector</th>
<th>Number of Channels</th>
<th>Approximate Operational Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixels</td>
<td>92 M</td>
<td>98.2%</td>
</tr>
<tr>
<td>SCT Silicon Strips</td>
<td>6.3 M</td>
<td>98.7%</td>
</tr>
<tr>
<td>TRT Transition Radiation Tracker</td>
<td>350 k</td>
<td>97.2%</td>
</tr>
<tr>
<td>LAr EM Calorimeter</td>
<td>170 k</td>
<td>100%</td>
</tr>
<tr>
<td>Tile calorimeter</td>
<td>5200</td>
<td>100%</td>
</tr>
<tr>
<td>Hadronic endcap LAr calorimeter</td>
<td>5600</td>
<td>99.6%</td>
</tr>
<tr>
<td>Forward LAr calorimeter</td>
<td>3500</td>
<td>99.7%</td>
</tr>
<tr>
<td>LVL1 Calo trigger</td>
<td>7160</td>
<td>100%</td>
</tr>
<tr>
<td>LVL1 Muon RPC trigger</td>
<td>383 k</td>
<td>99.8%</td>
</tr>
<tr>
<td>LVL1 Muon TGC trigger</td>
<td>320 k</td>
<td>100%</td>
</tr>
<tr>
<td>MDT Muon Drift Tubes</td>
<td>357 k</td>
<td>99.7%</td>
</tr>
<tr>
<td>CSC Cathode Strip Chambers</td>
<td>31 k</td>
<td>98.4%</td>
</tr>
<tr>
<td>RPC Barrel Muon Chambers</td>
<td>383 k</td>
<td>96.6%</td>
</tr>
<tr>
<td>TGC Endcap Muon Chambers</td>
<td>320 k</td>
<td>99.6%</td>
</tr>
<tr>
<td>ALFA</td>
<td>10 k</td>
<td>99.9%</td>
</tr>
<tr>
<td>AFP</td>
<td>188 k</td>
<td>98.8%</td>
</tr>
</tbody>
</table>

Dataset for ICHEP: up to ~ end of July
LHC/HL-LHC Schedule / ATLAS upgrade planning

Main ATLAS Canada shutdown / upgrade activities

- New Pixel insertable b-layer (IBL): DBM
- Consolidation of LAr calorimeter LVPS
- LUCID upgrade
- Forward protons (AFP)

- sTGC for Muon New Small Wheel
- Liquid Argon Calorimeter electronics

- New ATLAS Inner Tracker (ITk)
- Liquid Argon Calorimeter electronics
- Liquid Argon Forward Calorimeter replacement (if needed – decision June 2016)
Phase-1 Upgrades: Muon New Small Wheel

- NSW key component of ATLAS trigger strategy for Run-3
- sTGC construction / testing infrastructure in place at TRIUMF, Carleton and McGill.
- Module-0 sTGC completed by Canadian group in May 2016
- Production Readiness Review (PRR) passed last week at CERN
- Production of sTGC quadruplet production to begin this summer
 - Canadian NSW work on schedule
 - Overall, critical schedule issue is electronics

- Leading coordination roles in NSW project:
 - Overall project management, schedule, finances
 - Cathode board procurement
 - Wedge assembly at CERN
 - Software / simulation
 - Electronics / software for cosmic-ray test station
 - Production test pulser board for sTGCs
Phase-1 Upgrades: LAr Calorimeter Electronics

- Another key component of ATLAS trigger strategy for Run-3
- Improve granularity of information supplied to the L1 trigger
 - Provide additional background suppression at trigger level

Amongst other things, implementation requires new Front-End Crate baseplanes
- For the HEC, the are being developed and produced by Victoria / TRIUMF
 - Design approved in 2015
 - Pre-production board have been produced and are being tested
 - Environmental testing
 - Electrical testing: TDR test illustrated for one trace -- displays proper 50Ω impedance)

PRR planned for Fall 2016: production to follow approval
Phase-1 Upgrades: LAr Calorimeter Electronics

- Another key component of ATLAS trigger strategy for Run-3
- Improve granularity of information supplied to the L1 trigger
 - Provide additional background suppression at trigger level

Phase-1 trigger granularity

- Amongst other things, implementation requires new Front-End Crate baseplanes
- For the HEC, these are being developed and produced by Victoria / TRIUMF
 - Design approved in 2015
 - Pre-production board have been produced and are being tested
 - Environmental testing
 - Electrical testing: TDR test illustrated for one trace -- displays proper 50Ω impedance)

PRR planned for Fall 2016: production to follow approval
Phase-II Upgrades: Physics Motivations

- Primary goals: discovery of BSM and more detailed studies of the Higgs boson:
 - Higgs studies, in particular couplings:
 - Improvements over results with 300 fb\(^{-1}\)
 - Access to second-generation fermion couplings via \(H \rightarrow \mu\mu\)
 - Investigations of Higgs self coupling (via \(HH\) production)
 - Vector boson scattering: is this Higgs alone responsible for unitarizing \(\sigma(LV_L \rightarrow LV_L)\)
 - Sensitivity to VBF/VBS drives performance requirements in forward region

- Searches: increased sensitivity to rare SM/BSM processes
 - Exploration of Run-3 hints observations or discoveries.
 - Or (better?) the unexpected

![Physics processes for Phase-II performance studies](LHCC-G-166: physics processes for Phase-II performance studies)
ATLAS at the High Luminosity LHC

• Proposed instantaneous luminosity of $7.5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ ($\mu \approx 200$)
 – Needed for the desired ($\times 10$) increase in integrated luminosity
 – Rate and accumulated dose causes problems for some detector subsystems

• Proposed L0/L1 trigger scheme with rates of $1\text{MHz}/400\text{KHz}$ is incompatible with both tracker and calorimeter readout electronics:
 – Calorimeters modules can operate (except maybe the FCal – see later) but:
 • Calorimeter front- and back-end electronics must be entirely replaced
 • FE electronics also need replacing due to increased expected dose

• Radiation dose and occupancy also an issue for the tracker
 – This will be entirely replaced by a new all-silicon tracker, the ITk
 • Pixels at low radius, strips at higher radius.
 – Possible extension to $|\eta| = 4.0$ (from 2.5 for current inner tracker)
 • About 200 m2 of silicon. Half the cost / effort of Phase-II upgrades
 • Will require involvement of large fraction of the collaboration

• Anticipate some coverage improvements for Muon System

• ATLAS investigating dedicated timing detector in the forward region
Phase-II Tracker Upgrade (ITk)

- Excellent tracking needed for the HL-LHC physics program
- Need precision vertexing to identify the primary vertex to which hard-scatter products are associated (pileup suppression)
- Canadian group proposing to contribute to construction of the Endcap Strips detector:
 - About 20k Si strip modules needed: plan for 1500 in Canada
 - Additional planned contributions:
 - Industrialize production of “hybrid boards”
 - Module placement on support structure for Endcap “petals”
Past/Current ITk Activities

Canadian group already well established in the ITk collaboration:

- Detector layout studies
- Electronics coordination
- Radiation testing of Strip ASICs
- Adhesive studies (modules to support structure)
- Module construction preparations:
 - Two sites: both have produced good quality prototypes
 - Moving towards “site qualification” process
- DAQ development (using prototype built in Canada):
 - Includes contributions to firmware development:
 • single / multiple module
 - Module test stands available at both sites
- Development of QA/QC procedures:
 - Si sensor testing
 - Modules: measurements of per channel noise, gain, signal-to-noise ratio

NSERC-funded R&D in progress
Phase-II LAr Calorimeter Upgrade Work

- Integration into Phase-II electronics effort:
 - This would follow on naturally from our current Phase-I work
 - Focus initially on FE electronics for the HEC (also plan to contribute to BE)
 - HEC was built in part in Canada
 - Different from other LAr subsystems, due to cold preamplifiers in the cryostat
 - Exploit particular Canadian expertise in the HEC readout
 - Some work already beginning.

- Forward Calorimeter upgrade
 - Pulse degradation due to ion buildup and HV sagging due to high current draws over the HV resistors
 - Replacing FCal involves risk to other ATLAS endcap calorimeter systems: need to balance risk & reward
 - New “sFCal” would fix above problems and increase readout granularity by factor of ~ 4. Increase helpful for
 - PU suppression in forward region
 - VBF production, Vector boson scattering etc.

Decision on whether to replace the FCal expected in ~ month following June 22 review
Summary

- LHC/ATLAS operations starting the year very well

- Canadian group has long and successful involvement with ATLAS
 - Important and visible roles in the Collaboration
 - Physics output (including Physics Group Coordinators, subgroup conveners etc.)
 - Detector construction
 - Detector operations
 - Strong participation in current detector upgrade activities (Phase-I)
 - Strong participation in preparing for Phase-II Tracker and Calorimeter upgrades:
 - Canadian LAr Phase-II Upgrade Coordinator
 - Active preparations for Phase-II contributions:
 - Funding request in preparation for current CFI IF competition

- Canadian group planning to extend their historical and present level of commitment to ATLAS into the HL-LHC era

ATLAS @ CAP Congress 2016: 4 invited talks, 6 contributed talks, 1 poster
LHC Schedule 2016 Q2-Q4

<table>
<thead>
<tr>
<th>Week</th>
<th>April</th>
<th>May</th>
<th>June</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon</td>
<td>14</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>Tue</td>
<td>11</td>
<td>19</td>
<td>VdM</td>
</tr>
<tr>
<td>Wed</td>
<td>18</td>
<td>Scrubbing</td>
<td></td>
</tr>
<tr>
<td>Thu</td>
<td>17</td>
<td>May Day comp</td>
<td>VdM</td>
</tr>
<tr>
<td>Fri</td>
<td>16</td>
<td></td>
<td>WIM</td>
</tr>
<tr>
<td>Sat</td>
<td></td>
<td></td>
<td>beta* 2.5 km dev.</td>
</tr>
<tr>
<td>Sun</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week</th>
<th>July</th>
<th>Aug</th>
<th>Sep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon</td>
<td>27</td>
<td>30</td>
<td>MD 1</td>
</tr>
<tr>
<td>Tue</td>
<td>28</td>
<td>31</td>
<td>MD 2</td>
</tr>
<tr>
<td>Wed</td>
<td>29</td>
<td>32</td>
<td>Jeune G</td>
</tr>
<tr>
<td>Thu</td>
<td>30</td>
<td>33</td>
<td>beta* 2.5 km dev.</td>
</tr>
<tr>
<td>Fri</td>
<td>31</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Sat</td>
<td>32</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Sun</td>
<td>33</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon</td>
<td>40</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>Tue</td>
<td>41</td>
<td>46</td>
<td>51</td>
</tr>
<tr>
<td>Wed</td>
<td>42</td>
<td>47</td>
<td>Lab closed</td>
</tr>
<tr>
<td>Thu</td>
<td>43</td>
<td>48</td>
<td>End of run [06:00]</td>
</tr>
<tr>
<td>Fri</td>
<td>44</td>
<td>49</td>
<td>Ion run (p-Pb)</td>
</tr>
<tr>
<td>Sat</td>
<td>45</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Sun</td>
<td>46</td>
<td>51</td>
<td>Pb MD</td>
</tr>
</tbody>
</table>

P.Krieger, U of T
Institute of Particle Physics, AGM, June 12, 2016 Ottawa