### DEAP-3600 Dark Matter Search at SNOLAB







Mark Boulay Carleton University Queen's University

IPP June 13, 2016

### **DEAP-3600 Dark Matter Search**

Liquid Argon for DM (Single-phase)



Scattered nucleus detected via scintillation in LA

**Good Pulse-shape discrimination** between  $\beta/\gamma$  and nuclear recoils with scintillation

Argon is easy to purify

**Very large target masses possible**, no absorption of UV scintillation photons in argon, no pileup until beyond tonne-scale

**Position reconstruction allows surface background removal**, based on photon detection (~5 cm resolution allows removal of radon daughter events from analysis)

### **DM Sensitivity**

1 tonne fiducial mass (3.6 tonnes total) designed for < 0.2 background events/year with 60 keVr threshold





### **DEAP-3600** Detector

3600 kg argon in sealed ultraclean Acrylic Vessel (1.7 m ID)

Vessel is "resurfaced" in-situ to remove deposited Rn daughters after construction

255 Hamamatsu R5912 HQE PMTs 8-inch (32% QE)

50 cm light guides + PE shielding provide neutron moderation

Steel Shell immersed in 8 m water shield at SNOLAB



**DEAP Collaboration: 65 researchers in Canada, UK, and Mexico** 



## Fabrication and Assay of DEAP Acrylic

- Fabrication from pure MMA monomer at RPTAsia (Thailand), strict control of radon exposure for all steps, to < 10<sup>-20</sup> g/g <sup>210</sup>Pb (RPT was fabricator of the SNO Acrylic Vessel)
- Assay of production acrylic < 2.2x10<sup>-19</sup> g/g <sup>210</sup>Pb (Corina Nantais M.Sc. Thesis 2014, <0.2 bkg events/3 years)</li>





#### Monomer cast at RPT Asia, 2010 Mark Boulay

Thermoformed Panel at RPT Colorado

#### DEAP Acrylic Vessel, Panel Sections at Reynolds Polymer, Colorado



### DEAP Acrylic Vessel with Light Guide "Stubs" July 2012, U Alberta







#### AV neck bonding underground (December 2012-January 2013)



#### Bonding light guides to the DEAP AV, underground at SNOLAB



### DEAP Acrylic Vessel (2013)



#### Moving the AV into assembly room



## **DEAP-3600 Detector Assembly**



Copper sleeve over PMT

Mark Boulay

2,500 person-weeks of assembly (students, faculty, PDFs, technicians, engineers)



### **Acrylic Vessel Resurfacer**

- Mechanical sander to clean inner surface
- Components selected for low radon emanation
- Remove 0.5-mm surface in situ with  $N_2$  purge ٠
- Cleans surface to bulk-level impurities (order 100,000 cleaner than SNO vessel)



#### Completed Detector and Shield Tank



Completed Detector: Steel Shell, calibration tubes, muon veto in Shield Tank (fall 2015) Shield Tank and emergency vent lines, tank was filled with water Oct 2015

### Detector event rate during shield tank water fill





Electronics and trigger system operational for over a year (CAEN v1720s)

- Commissioning, electronics calibration
- Optical calibration with internal fibers
  (AARFs) and deployed diffusing laserball source





A high energy event (Commissioning running, Spring 2015)



## Angle definition



4 March 2016

James Bueno

# And the correlation between distance & t?



A handful of outliers in 2 months (Cherenkov mainly), otherwise the calculated energies are between 2.5 and 8.5 MeV.

PRELIMINARY – NOT FOR DISTRIBUTION! 4 March 2016 James Bueno



Old data with 3.0  $\mu m$  of



### DEAP-3600 Cryogenic Systems



## DEAP-3600 Cryocooler System Installed May 2012



### Liquid Argon Target Transfer and Storage



Bulk LAr storage on surface

2x240L (transfer)



LN<sub>2</sub>-cooled storage dewar underground

Transferring underground started March 3, 2015

From RGA scans (before purification in the DEAP system):

```
CH_4 < 10 \text{ ppb}, \text{H}_2\text{O} < 10 \text{ ppb}, \text{N}_2 < 4 \text{ ppb}, \text{O}_2 < 6 \text{ ppb}
```

(<100 ppt after purification)



**Argon Purification** 

Target stored as liquid, boiled and purified in gas phase, then (re-)liquefied into AV

(Gettering, radon and particulate filtration)

AV cooldown started Feb 2016





#### DEAP-3600 Analysis Groups

| Working group leader  | Institution | Group                                |
|-----------------------|-------------|--------------------------------------|
| Marcin Kuzniak        | Carleton    | Analysis Coordinator                 |
| James Bueno           | Alberta     | Gamma/other backgrounds              |
| Berta Beltran         | Alberta     | Position reconstruction              |
| Chris Ouellet         | Carleton    | Global backgrounds, Run<br>Selection |
| Chris Jillings        | Laurentian  | PMTs                                 |
| Rashid Medyev         | Carleton    | Efficiency/optical calibration       |
| Tina Pollmann         | Laurentian  | PSD                                  |
| Ben Smith             | TRIUMF      | Low-level calibration (electronics)  |
| Joe Walding           | RHUL        | Neutron calibration                  |
| Nasim Fatemighomi     | RHUL        | Energy response                      |
| Eric Vazquez Jauregui | UNAM        | Neutron backgrounds                  |

Working group structure, additional students/scientists contribute to various working groups, require additional effort on reconstruction, mu-veto calibration, Mark Boulay surface backgrounds, optical calibration Summary

• DEAP-3600: 3.6 tonnes of liquid argon (1 tonne fiducial) >20X improvement in experimental sensitivity, excellent high WIMP mass sensitivity

(similar sensitivity to XENON-1T for high WIMP mass)

- Collecting data in commissioning phase since early 2015, detector calibration and analysis well advanced
- Start of detector cooldown Feb 2016, start of liquid filling June 11, 2016

• Expecting first physics data summer 2016

## END