

LYSO Crystal Testing for an EDM Polarimeter

for the JEDI Collaboration | CALOR 16

May 17, 2016 | Fabian Müller | IKP-2

Outline

- **Experimental Setup**
- Data Analysis
- Results
- Summary / Outlook

Comparison of PMT Module 1 and SiPM Module 3 at 270 MeV

Introduction

- External beam at the COSY accelerator facility in Jülich, Germany.
- LYSO crystals from two different manufacturer.
- PMT and <u>Silicon PhotoMultiplier</u> (SiPM).
- Deuteron beam (100MeV, 150MeV, 200MeV, 235MeV and 270MeV).
- Struck 14 bit, 250 MS/s Flash ADC.

Model of the full EDM polarimeter built from LYSO detector modules.

Open PMT module: Wrapped LYSO crystal, lightguide glued to dual channel PMT (Hamamatsu R1548-07), high voltage divider and 3D-printed tensioning device.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 351

Finalized PMT module: PMT, lightguide and high voltage divider are inserted in a steel housing. Everything is tensed together by capton strips.

Experimental Setup SiPM Module

Open SiPM module without LYSO crystal: 4x4, 6mm SiPM array (SensL C-Series), 3D-printed ABS housing and tensioning device. Closed SiPM Module: This module is clamped in the mounting device to apply a force to the tension spring.

Experimental Setup Experiment

Physics Institute III B

Manufacturer	Amount	Dimension [mm]	Module
Saint-Gobain	2	30 x 30 x 100	2 + 3
Saint-Gobain	2	15 x 30 x 100	4 (4.1 + 4.2)
Epic Crystal	1	30 x 30 x 100	1

Overview of the LYSO crystals used in this experiment.

JEDI

Data Analysis Typical Spectra

- Baseline = <Baseline Calculation Range>
- $E_{dep} \sim$ Shaded Area

Comparison of PMT Module 1 and SiPM Module 3 at 270 MeV

- The integrated signals have been used to create spectra for the individual modules.
- These spectra show the energy distribution of the registered particle.

Data Analysis Cuts

 Calculate \(\chi^2\) in the Baseline Calculation Range to exclude events with a misaligned baseline

 Count peaks to exclude pile-up events

Data Analysis _{Cuts}

 Cut on the spectra of the start counters in order to exclude events with *head on* pile-up

Cut on Side-Vetos

 Cut on the spectra of the side vetos to exclude break-up events where a particle escaped the LYSO crystal

Results Calibration

Calibration of LYSO Module 1

Effective beam energy due to energy losses in the beam path. Taken from a GEANT4 simulation.

Member of the Helmholtz-Association

Results Calibration

The red star denotes the data from the SiPM module 3.

Resolution

Resolution of LYSO Modules

The red star denotes the data from the SiPM module 3.

Member of the Helmholtz-Association

The red star denotes the data from the SiPM module 3.

- A deuteron beam with five different energies up to 270MeV was used to examine the LYSO modules.
- The energy calibration of the modules was well described by a second order polynomial with a small quadratic term.
- The resolution of the LYSO modules lies below 3% for all tested energies and below 1% for the target energy of 270MeV.
- A deuteron reconstruction efficiency over 65% have been achieved in the whole energy spectrum.
- The SiPM readout promises good results without the need for an active amplification circuit and high voltage.
- All test will be repeated with a more sophisticated experimental setup, new generation of SiPMs and a larger number of LYSO crystals.

Summary