

LHC: from Run I to HL-LHC

$$\sqrt{s}$$
 = 7-8 TeV
 \int L dt = 25 fb⁻¹
Higgs boson discovery

Peak luminosity —Integrated luminosity

Main Run I highlight: Higgs boson discovery & first measurements

LHC: from Run I to HL-LHC

—Integrated luminosity

- Precision measurement of the Higgs Sector
- Observation of HH production, constraints on self-coupling λ
- Rare ($\mu\mu$, $Z\gamma$...) or forbidden H_{125} decays ($\tau\mu$...)
- Unitarity via Vector Boson Scattering

- \sqrt{s} = 7-8 TeV \int L dt = 25 fb⁻¹ Higgs boson discovery!
- > Search for new physics and/or measurements of BSM particles
 - (if found in \geq Run II)
 - Extended Scalar Sector,
 - SUSY, Dark Matter, ...

Powerful demand on very high luminosity!

LHC: from Run I to HL-LHC

Challenges: Radiation damage

3000 fb-1 Absolute Dose map in [Gy] simulated with MARS and FLUKA

Aging studies shows that Endcap Calorimetry (+Tracker) has to be replaced.

Challenges: Pile-Up (PU)

Figure 9.1: An event display showing reconstructed tracks and vertices of a simulated top-pair event with additional 140 interactions overlaid for the Phase-II detector.

- ➤ HL-LHC Nominal Parameters:
 - 140 additional interactions per bunch crossing (every 25 ns) + out-of-time PU
 - Could go up to 200
 - Instantaneous Peak Luminosity: 5x10³⁴ cm⁻²s⁻¹

See talks by JB. Sauvan (L1) and F. Chlebana (Pflow)

Challenges for Triggers (especially Level 1!) & offline reco + computing (30xLHC)

Need to preserve "low" energy physics (125 GeV Higgs) and explore TeV scale (e.g. SUSY) in a very harsh environment!

HGCAL: General Layout

CMS choice: High Granular Sampling Si-based Calorimeter [*]

with 4D measurement of showers (energy, position)

(possibly 5D with timing) [**]

HGC Parameters

HGC-ECAL: Si+W/Cu

28 layers, ~26 X_0 (1.5 λ)

 $10 \times 0.65 X_0 +$

 $10 \times 0.88 X_0 +$

8 x 1.26 X₀

Operation at -30°C via CO₂ Cooling (to mitigate Si leakage current)

Table 3.2: Parameters of the EE and FH.

	EE	FH	Total
Area of silicon (m ²)	380	209	589(*)
Channels	4.3M	1.8M	6.1M
Detector modules	13.9k	7.6k	21.5k
Weight (one endcap) (tonnes)	16.2	36.5	52.7(**)
Number of Si planes	28	12	40

(*) 3x CMS tracker!

(**) one HGC+BH endcap: ~230 tonnes

Modules, Cassettes & Mechanics (Technical Proposal)

Modules

with 2x6 or 8" Hexagonal Si sensors, PCB, FE chip, on W/Cu baseplate

Modules mounted on

Cu Cooling plate with embedded pipes

== Cassettes

Shielding Air gap

Cu

(Cu/W) Baseplate

Readout Chip

Cassettes inserted in mechanical structure (containing absorber)

Modules, Cassettes & Mechanics (Si & modules)

Modules

with 2x6 or 8" Hexagonal Si sensors, PCB, FE chip, on W/Cu baseplate

See talk by Z. Gecse (test beam)

To cope the irradiation / PU:

- η-dependent depletion of Si
- η-dependent cell size

Thickness	$300 \mu \mathrm{m}$	$200 \mu \mathrm{m}$	$100 \mu \mathrm{m}$
Maximum dose (Mrad)	3	20	100
Maximum n fluence (cm ⁻²)	6×10^{14}	2.5×10^{15}	1×10^{16}
EE region	R > 120 cm	$120 > R > 75 \mathrm{cm}$	$R < 75 \mathrm{cm}$
FH region	R > 100 cm	$100 > R > 60 \mathrm{cm}$ $R < 60 \mathrm{c}$	
Si wafer area (m²)	290	203	96
Cell size (cm ²)	1.05	1.05 0.53	
Cell capacitance (pF)	40	60	60
Initial S/N for MIP	13.7	7.0	3.5
S/N after 3000 fb ⁻¹	6.5	2.7	1.7
	1	I	ı

Modules, Cassettes & Mechanics (Cassettes)

"dummy" cassette for thermal tests

CO₂ cooling plant at FNAL

Modules mounted on

Cu Cooling plate with embedded pipes

== Cassettes

Modules, Cassettes & Mechanics (Structures)

HGC-EE: C-fiber Alveolar structure with embedded W plates

HGC-HCAL Structure

Will evolve if absorber=steel to minimize machining

Inspired from CALICE Si/W

C-fiber "petal" alveolar prototypes

Front-End Electronics (1)

One of the most challenging aspect of the project!

Need to have large dynamic range @ low power + low noise

- Baseline architecture: Charge + Time-over-Threshold (ToT) [*]
 - Switch from charged readout to ToT at ~100 fC
 - ADC (10 bits) and TDC (12 bits) with existing designs
 - Potential for 50 ps timing per cell

[*] alternative: more classical readout (bi-gain) or switched feedback

Front-End Electronics (2)

One of the most challenging aspect of the project!

Need to have large dynamic range @ low power + low noise

- > SKIROC2_CMS (not the final chip):
- Includes some of the HGC features:
 - ~20ns shaping time and 40MHz sampling
 - ADC + TOA (~50ps) + TOT
 - P-on-N and N-on-P read-out options
- Production launched in January, Available in ~June
- Plan to use it for CERN test beams (Fall)
 - after tests on board (noise, stability, linearity, crosstalk, ...)

- Also: test vehicles on blocks launched (TSMC 130nm)
- First iteration of full chip expected by Spring 2017.
 - with feedback from test vehicles & SKIROC2_CMS

HGC Performance (1)

EM shower energy containment

Electron energy resolution vs Si thickness

Shower radius quite small in first layers.

Can use longitudinal segmentation for PU rejection, ...

Stochastic term: ~20%

but **low constant term** (target: 1%)

HGC Performance (2)

High Granularity + longitudinal segmentation gives additional powerful handles for particle ID:

shower start, shower length compatibility, restoration of projectivity, 3D shower profile fits, layer-by-layer PU subtraction, etc...

Combination of HGC and Tracker (with far from optimal PFlow algo)

~Recover Phase I 50 PU performance!

More in talk by F. Chlebana (PFlow)

Conclusion & Perspectives (1)

> HGCAL is on the critical path towards physics discoveries & measurements in Phase II (HH, VBF jets for Higgs/SUSY/Dark Matter, Unitarity, ...) and has all ingredients for being rad-hard, mitigate PU, deal with high rates,... Many major & excited challenges for the next decade : Engineering (includes cold/warm transition, services, ... FE electronics & L1 Trigger Software, computing PFCandidate PFCandidate 186

Conclusion & Perspectives (2)

Now in R&D phase

- Fast progress since Technical Proposal (mechanics, sensors & modules, FE, ...)
- Several test beams session scheduled this year (FNAL, CERN) | See talk by Z. Gecse

See talk by Z. Gecse (test beam)

- TDR expected end of 2017, including key technical choices
- Construction starts in ~2019

BACK UP SLIDES

Summary of the CMS upgrades for Phase-II

Trigger/HLT/DAQ

- Track information at L1-Trigger
- L1-Trigger: 12.5 μs latency output 750 kHz

HLT output ≃7.5 kHz

Barrel EM calorimeter

- Replace FE/BE electronics
- Lower operating temperature (8°)

Muon systems

- Replace DT & CSC FE/BE electronics
- Complete RPC coverage in region 1.5 < η < 2.4
- Muon tagging 2.4 < η < 3

Replace Endcap Calorimeters

- · Rad. tolerant high granularity
- 3D capability

Replace Tracker

- Rad. tolerant high granularity significantly less material
- 40 MHz selective readout (Pt≥2 GeV) in Outer Tracker for L1-Trigger
- Extend coverage to η = 3.8

Radiation Tolerance (1)

Charge collection vs neutron fluence

200 μm active thickness, p-in-n vs n-in-p

Radiation tolerance (2)

Neutron irradiation

Charge collection efficiency

Leakage current vs fluence at -20° (extrapolated to -30°)

Draft paper in preparation

HGCAL: General Layout

Back-Hadron Calorimeter

вн	number
Scintillator	428 m ²
WLS fibers	12 km
Clear fibers	73 km
SiPMs	5184
Optical fibres (data)	1152

- Improvement of current HE tiles for ~ 5 Mrad tolerance, with increased granularity (~ x2 in ϕ , x1.3 in η):
 - doubly-doped plastic scintillator x 2 light after irradiation
 - Finger tile design: shorter light path

HCAL Endcap Megatiles Upgrade

- Also thinking of usage of Si at high eta.
 - Would require to cool down the full endcap calo...

HGC Calibration

Calibration requires:

- Inter-calibration (cell-by-cell response equalization)
 With MIPs
 Specialized cells
 - Objective: Constant term smaller than 1% ⇔ 3% precision for IC (results in <0.5% constant term)
- Cells weights taking into account absorber thickness
 - W plates: thickness contained within +/- 40 μm
 - W/Cu plates: thickness contained within +/- 50 μm
 - Si wafer: thickness contained within +/- 5 μm
 - Diffusion depth of all pads (within a wafer):
 +/- 3 μm of the average of the wafer
- Response Linearity, Monitoring
- Absolute scale with standard candles

Charge injection

HGC calibration: inter-calibration with MIP tracking

- "MIP" Tracking ("punch through")
 - Require signal in layer before/after + isolation
 - Can be done on any readout (L1, offline)

- ➤ Tested in MC minimum-biased sample with <N_{PU}>=140
- ➤ Need 1.5M events to reach 3% precision (takes ~ 1 day)

- > In addition, for redundancy:
- Low-capacitance/low-noise cell included in each wafer for calibration:
- 7 sub-cells subscribed inside a standard hexagonal cell (large S/N)

HGC Calibration: linearity, monitoring

- Electronic chain of each channel:
 - linearized, monitored with charge injection system (chopper circuit, fixed calibration capacitances connected to FE)

Electronics calibration circuit.

Two sections with overlapping ranges (one for small, 1-100 fC, one for large signals)

HGCAL Performances

e/g Performances (2)

BDT Electron ID performances

(low ET, critical for multi-leptons topologies: $H \rightarrow ZZ \rightarrow 4$ leptons, ...)

First Prototypes/Mock-up

Mechanical Prototype: Modules for Cooling Tests

Automated Bonding Tests

CO2 Cooling

CMS internal

Cassettes FEA

Goal: ∆T ~ 1-2 K

6mm Cu plate 1 pipe – uniform heat load △T ~ 0.9K (over the cassette)

Cooling Tube: OD-4.8mm, ID-3.2mm, Length - 5.9 m, mass flow: 2.0 gm/sec, T_{max} -28.00C, T_{min} -28-86C.

A Stoop Sele Termal
Transportion 2

A Stoop Sele Termal
Transportion 2

17.990 Mar

17.990

Thermal Mock-up with tests (CO2 Cooling stations at FNAL, IPNL)

Level 1 Trigger (1)

Mechanics: HGC-EE

W/C-fiber Alveolar 30° "petals"/"wedges" (8-9 layers each)

Petals assembled together as 3 wheels, glued together

(each wheel is rotated by (up to) 10°)

Cassettes (with active element) inserted in alveoli.

Design & Building technique inspired by the CALICE Si/W ECAL mechanical structure

Why CO2 Cooling?

From N. Lumb (IPNL)

- Current Endcap uses monophase (liquid) cooling
 - Coolant heat capacity (C6F14): 1.05 kJ/kg/oC
 - Kinematic viscosity: 0.4 cSt
 - Density: 1.68 g/ml
- CO2 based systems are 2-phase
 - Latent heat of vapourisation CO2: 574 kJ/kg
 - Kinematic viscosity: 0.1 cSt
 - Density: 1.0 g/ml
- Consequently, CO2 based systems remove same amount of heat with much lower mass flow (factor ~100 depending on allowed monophase ΔT)
 - 150W removed by ~1g/s CO2!
 - Can use pipes with smaller cross-section
 - Reduction in mass of pipes and the liquid contained within them
- Also in favour of CO2:
 - High heat transfer coefficient
 - Radiation hard
 - Environmentally friendly: Global warming potential = 1 (vs several 1000s for C6F14)

TP description : sketch [P. Bloch]

5_m

Cold detector

TPG generation on detector

RBX region on the back of BH

100m

- DCDC converters
- Data concentrators for copper links

4** copper links -> 1 optical one ** assumes further data compression by

30-40%

17

USC

Trigger + Data

Back End

~ 36K copper links

~ 14K optical links