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Motivation

Challenges involved with working with CASTOR

CASTOR is installed in a very challenging
environment:

Installed in very forward region
Very high radiation level
non-negligible stray magnetic field

Consequenses:
Conventional calibration methods (so far)
unsuccessful:

Searches for resonances unsuccessful
Jet pt balance methods not yet working
CASTOR affected by stray magnetic field

Installation and alignment delicate task:
CASTOR needs dedicated (de)installation for data
taking
2 Tonnes at 1 cm from beampipe
Platform moves in magnetic field!
Small uncertainty on position gives large
contribution to uncertainty on scale

→ Present our solutions and improvements to these
difficulties at LHC Run 2!

Emphasis: relationship between various
(entangled) aspects of performance CASTOR

CASTOR	  
-‐6.6<η-‐5.2	  
14m	  from	  IP	  
1	  cm	  from	  
Beampipe	  

Figure: Location of CASTOR at CMS
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Content CALOR2016 talk

Emphasise key points talk:

Magenta: improvements performance in Run 2 w.r.t. Run 1, new techniques
developed, lessons learned
Blue: key numbers obtained with CASTOR design as reference

Orange: future improvements to improve CASTOR performance
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Introduction

CASTOR: an introduction

CASTOR: forward em+hadronic
sampling Cherenkov calorimeter

Uses fine-mesh PMT’s (Hamamatsu
R5505 and R7494)

Equiped with fibers with LED pulses
for in-situ commissioning

Design motivated by fast response
(≤ 50ns) Cherenkov process and
radiation hardness

Relative energy resolution pions:
18.3⊕ 187√

E
(Eur. Phys. J. C 67 (2010)

601-615)

Longi.	  14	  
modules	  

Transv.	  8	  
sectors	  

Figure: Schematic picture of one CASTOR half

Figure: Schematic drawing of a CASTOR channel
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Intercalibrating CASTOR using Beam Halo Muons

LHC beam causes beam halo muons
traversing CASTOR towers

MIP causes on average O(1)
photoelectron per channel

Collect muons at maximal allowed gain
(1800 V, amplification factor ≈ 106)
Collect isolated beam halo muons with
trigger during circulating beam periods

Online: demand exclusively in one tower
minimally 1 module above threshold
(baseline + 5 σnoise ≈0.5 GeV)
Offline: exclusively in one tower
minimally 3 channels above
channel-specific threshold in 3 different
longitudinal sections of tower

Maximal gain improves collection
efficiency (relevant for CASTOR). No
improvement uncertainty final result
Relative uncertainty on IC constants:
16%

Figure: Left: Run 2 charge spectrum for an offline
isolated muon event selection (blue), overlaid noise
(red) and a tuned PMT toy model (green) after
pedestal subtraction. The tuned model predicts
〈0.5〉 photoelectron per event. Plot from CMS
DP-2016/006.
Right: Run 1 charge spectrum for an offline isolated
muon event selection. The data are fitted with
Poisson⊗Gauss. The good description and lack of
long tails indicates negligible muon showering.
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Pedestal Signal Spectrum noisiest Capacitor
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Figure: Pedestal charge spectrum for the noisiest
capacitor of a typical CASTOR channel for various
cathode/last dynode Voltage settings. Plot from
CMS DP-2016/006
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Figure: Difference per channel of fitted and
statistical RMS

CASTOR channel baseline and threshold at maximal gain

3 Noise contributions to signal in pedestal energy spectrum at 1800 V
Electronic noise: O(0.1) GeV, no dependence V
Thermal photoelectrons: O(1) GeV,
Rare discharges (likely afterpulsing): max O(100) GeV

Take fitted parameters to determine thresholds. Fitted RMS ≈ 10% lower!
Use difference stat. and fitted RMS as indicator bad channels. ∆RMS ≥ 2 is
suspicious
Future improvement: suppress non-electronic noise by applying tower quality
criterium using CASTORs longitudinal segmentation
Tower cutoff empty bunch analysis: 6 σ cutoff ≈ 1.5 GeV
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Correcting gain from muon to physics
Voltage

Correct from max. gain to custom
gain recipe (optimised to maximal
dynamic range)

Survey: dedicated lab dark box
measurements on PMT’s performed
Different method available at
CASTOR as well (statistical
method):

Deduce Gcorr from corrected LED
signal (in situ)

Corrected Signal
Sc = St − Sp = G · Np.e.

σSc ≈ G ·
√

Np.e. → G =
σ2

c
Sc

→ Test consistency and use both!

Gain vs HV for survey 
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Figure: Dark Box measurements with fitted gain
parameterization
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Consistency Survey and statistical method

Statistical method vs Dark box survey

Survey and statistical method give reasonably
consistent results on Gcorr

Survey uncertainty (〈1%〉) smaller than
uncertainty statistical method (〈17%〉)
Future improvement: reduce uncertainty
statistical method by fitting HV dependence
(as done for survey)!

Relevance for other subsystems

Survey laborious lab measurement
only for B=0!

Statistical method gives reasonably consistent
estimate gain and works in situ at B6= 0T

Weighted Difference Gain Corr Fact. LED and Survey

2
Survey

Corr
G

σ+2
LED
Corr

G
σ) / 

Survey

Corr-GLED
Corr

=(GCorr G∆

Entries  130

Constant  1.659± 7.285 

Mean      0.2962± 0.3113 

Sigma     0.440± 1.894 

10− 8− 6− 4− 2− 0 2 4 6 8 10
0

2

4

6

8

10

12

14 Entries  130

Constant  1.659± 7.285 

Mean      0.2962± 0.3113 

Sigma     0.440± 1.894 

Corr G∆

Intersection good channels

O
cc

.

CMS Preliminary

Figure: Pull distribution with Gauss fit of
gain correction factors from survey and
statistical method. Plot from CMS
DP-2016/006
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30.8 %
HF Scale

30.8 %
Model dep.

23.1 %
Castor pos.

15.4 %
Castor Non Comp.

Total Uncertainty 17 %
Contributions to Uncertainty Energy Scale Castor Run 2

CASTOR state of the art Absolute Calibration

Full data/MC residual correction future goal (likely jet pt balance)
Currently use state of the art (hybrid) calibration:

Obtain estimate of incident energy on HF on particle level. Extrapolate to CASTOR
acceptance. Apply shape correction factors
Obtain absolute scale well consistent with test beam results
Total uncertainty state of the art calibration: 15%
Alignment adds substantial contribution to overall uncertainty on scale
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Contribution CASTOR Alignment to systematic uncertainty

Procedures and methods for alignment

Delicate measurement: 1 cm shift leads to
shift η from -6.6 to -6.4. Large systematic for
analyses!

Run 2: better calibration IR sensors w.r.t.
curved object (beampipe). Uncertainty
<1.6> mm per coordinate
Contribution alignment to systematic
uncertainty for energy flow measurement:

Run 1: 16%
Run 2: 7.5%→≈ 50% improvement!
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Offset of far side:
x=-4.68+-1.90 mm
y=-2.889+-2.43 mm

CMS Preliminary

Offset of near side:
x=-2.23+-2.17 mm
y=-1.648+-1.75 mm

measured position (IP side)

beam pipe

nominal sensor position

reconstructed sensor position

CASTOR: measured inner boundary

Figure: Illustration of the global fit result of the
CASTOR position for data taking during LHC Run 2
pp collisions (B=0T). Plot from CMS DP-2016/006
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Outlook Run 1 and 2 physics results:

CASTOR can probe to x ≈ 10−6, region sensitve
to various QCD phenomena. Observables:

Energy deposits
Jet Spectra
Rapidity gaps

CASTOR extends acceptance other
measurements:

Inelastic/diffractive cross section measurements
Veto for exclusive vector meson production in
Heavy Ion analyses
Forward-central jet studies in various hadron
collisions

Recently Run 2 CASTOR results presented at
DIS conference:

energy flow in CASTOR (FSQ-16-002)
Inelastic cross section measurement (FSQ-15-005)
limiting fragmentation (FSQ-15-006)
Inclusive jet spectrum in CASTOR at 13 TeV
(FSQ-16-003)

Uncertainty on energy scale needs improvement.

Future strategy bifold: take ratio of
measurements to cancel the scale uncertainty.
Try to improve energy scale by jet pt balance
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Figure: Unfolded CASTOR jet energy
spectrum for 13 TeV pp collisions with
various MC models. Plot from CMS PAS
FSQ-16-003
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Developing a method for ratios between different installation periods

Conventional absolute calibration done per run at CMS

For CASTOR state of the art calibration fixed for Run 1. Depends on Run 1
intercalibration constants and conditions

Intercalibration software and HV setting for muon collection differs between Run 1 and
Run 2
Developed a method to fix scales consistently between Run 1 and Run 2:

Analyse Run 1 Minbias data with Run 1 and Run 2 intercalibration
Preliminary: difference in reconstructed total energy gives difference in scale
→ Diffference Run 1 and Run 2: ≈ 10 %. In range of uncertainty. Important for ratios of
measurements!
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Summary and Lessons Run 2 performance

CASTOR Intercalibration

Obtain noise threshold per channel from fit pedestal spectrum
Difference fitted and statistical RMS indication noise in channel
Future improvement: develop algorithm to distinguish afterpulsing from physics
signals
Collect muons at maximal gain: improved collection efficiency, no improvement
uncertainties. Uncertainty intercalib constants: 16%
Results on statistical gain correction factors reasonably consistent with Survey
results. Large range of applicability!

CASTOR alignment

Uncertainty on alignment: <1.6> mm
per coordinate. Resulting uncertainty
on energy scale: 7.5% (improved ≈
50%!)

Overall uncertainty Run 2

Uncertainty absolute calibration and
alignment together yield 17%
uncertainty energy scale
Future steps: take ratios of
measurements and try to improve
uncertainty on scale
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Content Backup

Backup slides

Installing CASTOR

Physics potential of CASTOR, completed analyses

Determining the uncertainty on intercalibration using bootstrapping
Details of gain analysis:

Statistical method
Survey method
Results on Gcorr

Noise in PMT’s:
Results on noisy PMT’s
Initial and final bad channel selection

Castor Jet trigger efficiency

Fixing the scale for Run 2
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Installing CASTOR

Figure: Installing CASTOR for 2015 data taking

Installing 2 tonnes at 1 cm from beampipe

CASTOR can’t be installed permanently.
Neutron flux measurement nearby
CASTOR: 13± 3(1/µb−1/cm2sec)

Unconventional heavy object in close
vicinity (1cm) to beampipe

Anticipate movements of platform (±
3mm) due to magnet ramp during
installation!

Movements in magnet cycle (per
installation) quite predictable

Time	  
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Figure: Distance of infrared position sensors at the
interaction point side of CMS in mm w.r.t beam pipe
during a full cycle of the magnet ramp. Near and Far
indicate the halves of CASTOR.
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Procedures and methods for alignment

Three methods for alignment:
Measure CASTOR w.r.t. fixed points in
Cavern
Sensors: measure CASTOR w.r.t.
beampipe
Alignment using TOTEM T2 (Run 1 only):
make "x-ray"

Figure: Alignment of CASTOR using tracks in Totem
T2- telescope
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Physics potential of CASTOR

CASTOR well equipped for
energy deposits, forward jets
and forward rapidity gaps

CASTOR physics program
involves various QCD and
small-x phenomena (probe
down to x ≈ 10−6!)

Extend CMS acceptance for
event selection

Potential for exotic study:
strangelets and Centauro-like
events
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CASTOR contributed to following completed Run 1 physics analyses

Measurement of the η and centrality dependence of the very forward energy
density in PbPb collisions Results from CMS-PAS-HIN-12-006
Study of the underlying event at forward rapidity JHEP 04 (2013) 072
Measurement of diffractive dissociation cross section Phys. Rev. D 92, 012003
(2015)

CASTOR contributes to other physics fields of CMS by improving knowledge on proton
structure and generator models with applications in pileup and luminosity estimates

18 / 13



Backup Installation Physics results Uncertainty on intercalibration Details stat. gain analysis Noise Jet Trigger Efficiency Scale between Runs

Physics outlook CASTOR data:

CASTOR can probe to x ≈ 10−6. Searches for
signals of nonlinear evolution equations,
saturation, MPI.. Various observables available:

Energy flow
Jets
Gaps

Recently Energy flow, total cross section, limiting
fragmentation and Jets in CASTOR presented at
DIS!
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Figure: Unfolded CASTOR jet energy spectrum for 13 TeV pp
collisions with various MC models. Plot from CMS PAS
FSQ-16-003
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Uncertainty on intercalibration

Bootstrapping procedure

1. Randomly choose a sector where the muon should go through

1.a. For all channels in this sector take a random energy with a PDF from their
real data muon signal distribution

1.b. For all other channels take a random energy with a PDF from their real noise
signal distribution
→ obtain a "muon like" event for castor created with our fake rechit energies.

2. This event goes now through the whole muon analysis chain

2.a. If the muon is found, for every channel in this sector we fill the fake muon
signal in our new muonsignal channel hist.

3. Redo step 1,2 as often we have muons in real data (10k)

3.a. Now we have for every channel new fake muon signal histstograms. Calculate
new IC constants (as we do in real data)

4. Redo step 1 to 3 to a whole bundle of IC constants for every channel

4.a. The variation of the IC constants in every channel should give us the stat.
uncertainty of the IC value
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The Electronic and Photonic gain of a PMT

Ge vs Gγ

Electron gain Ge converts photoelectrons (at Cathode)
to Anode electrons: Np.e · Ge = Ne,A

Photon gain Gγ converts incident photons to Anode
electrons: Nγ · Gγ = Ne,A

Note Gγ = QE · Ge (QE is Quantum Efficiency)

Two methods to measure gain of CASTORs PMT

Performed dedicated Dark Box PMT survey measurements (in lab). Allows
determination of Gγ

Precision measurement which requires dedicated tools and setup

In situ LED and Pedestal Runs. Allow for determination Ge.
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Ge from Statistical Analysis LED and Pedestal Runs

Obeservables

Measure LED and Pedestal Energy Response distribution

Fit to pedestal gives estimate Sp

Fit to LED gives estimate St (sum pedestal and LED signal)
→ Obtain corrected signal Sc = St − Sp
σSc follows from statistical properties St and Sp

Try determine Ge from statistical properties Sc

Np.e · Ge = Ne,A = Sc
σSc
Sc

=
σNp.e
Np.e

⊕ σGe
Ge

Assume σNp.e =
√

Np.e (Poissonian distributed)

Assume 1√
Np.e

>>
σGe
Ge

→σSc = Ge ·
√

Np.e

Obtain Ge =
σ2

Sc
Sc

(δGe from stat. uncertainties Sc , σSc )
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Why one cannot obtain Gγ from statistical analysis

Try instead determine Gγ from statistical properties Sc

Try to determine Gγ from statistical properties Sc :

Nγ · Gγ = Ne,A = Sc
σSc
Sc

=
σNp
Np
⊕
σGγ
Gγ

σGγ
Gγ

=
σGe
Ge
⊕ σQE

QE

Cannot assume 1√
Np
>>

σQE
QE !!

→ From statistical analysis of LED Runs we can only determine the electron gain (no
estimate Gγ )
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Estimating Gγ from Analysis PMT survey

Setup and observables

Direct photon beam on test PMT

Need to compensate for lumen fluctuations. Split incident photon beam. Direct
fraction beam on test PMT and fraction on reference PMT
Test PMT: measure Cathode current IC*, Anode Current IA. Reference PMT:
measure current IR (at anode)

Ge = IA/IC
Quantum efficiency scales with IC/IR
* Measuring Cathode current: delicate measurements on nano-Ampere scale

In an intercalibration interested in relative channel-to-channel differences, so can
use IC/IR as QE

Obtain Relative Gγ = QE · Ge
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Summary

summary

With statistical method can in situ determine Ge (no estimate Quantum Efficiency
and Optical efficiency)

With PMT survey determine photon gain (but no estimate optical efficiency)

Muon intercalibration takes all effects into account
→ Note for gain correction factor Quantum and optical efficiency divide out
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Ge and Gcorr for LED and Survey results

Observe some channels large uncertainty

Overall agreement qualitatively quite reasonable
Gain per Channel for 2015 Data

(Good channels, Averaged over Caps)
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Ratio correction factors survey and statistical method

Gain Correction Factors for LED and Survey
(Good channels, Averaged over Caps)
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Figure: Gain correction factors and their ratio determinded by statistical method and analysis
survey results
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Parameter C

Value parameter C from fits to gain (survey 2012)
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Figure: Parameter C from PMT survey

28 / 13



Backup Installation Physics results Uncertainty on intercalibration Details stat. gain analysis Noise Jet Trigger Efficiency Scale between Runs

Parameter K

Value parameter K from fits to gain (survey 2012)
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Figure: Parameter K from PMT survey
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Fits to Gain vs V

Gain vs HV for survey 1
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Figure: Gain measurements with corrections and fit
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Fits to Gain vs V

Gain vs HV (survey). Channels with removed data points
Data: black. Removed points: red.
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Figure: Gain measurements with corrections and fit
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Possible causes noise in PMT’s

Various sources of noise in PMT’s

Leakage current (Ohmic leakage; dominant at low voltage)

Thermal photoelectrons (contribution scales exponentially with supply voltage acc.
to producer)

Scintillation glass envelope (can be minimized by coating)

Field emission current (at excessive HV)

Ion feedback (can be identified from timing)

Cosmic rays, environmental gamma rays, ..

Problems in HV supply (can be identified by correlations between channels)
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Channel Quality

Selecting noisy channels at maximal gain

Channel too noisy:
Can’t intercalibrate
Compromises online muon trigger

Difference statistical and fitted
width indicator of channel quality
Select noisy channels with cuts
(spectra in backup slides)

Final judgement by individual
inspection

Noisy Channels (highest Cap)
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Figure: The initial and final noisy channel
selection (final bad channels with blue dot)
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Defining the Cut parameter for finding noisy channels

Noise Distributions for Noisiest Cap. HV 1800/100
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Figure: Noisy channels in CASTOR
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CASTOR Jet trigger for Run 2

Evaluating trigger efficiencies at p+p
√

s = 13 TeV

Medium Jet Trigger implemented. Triggers on
sector with Energy ≥ 850 GeV

Medium Jet trigger 100% efficient in Data and
MC from 2 TeV onwards (≈ 3.5 TeV on
particle level)

Efficiency medium energy CASTOR jet
trigger well understood and 100% efficient
in data/MC above Jet energy of 2TeV

Figure: Trigger efficiency of CASTOR Medium Jet
Trigger in LHC Run 2 Zero Bias pp

√
s = 13 TeV

data and a Pythia 8 Monte Carlo Minimum Bias
event sample (B=0T) with fitted Error function.
The efficiency is defined as the fraction of events
with an offline reconstructed leading jet that
cause a jet trigger.
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A consistent Absolute Calibration of CASTOR

Boundary conditions

Assume in 2013 a full inter and absolute calibration procedure was performed

Idea presented here assumes no change in response PMT’s or electronics since
last abs. calibration (like alteration of PMT’s, ...)

Assume we can compensate for effect of B field between 2013 and 2015
intercalib, for example by LED corrections or that effect is negligible
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A consistent Absolute Calibration of CASTOR

Goal

Given above aim to perform abs calibration of CASTOR in 2015 to compensate for
following effect:

Statistical fluctuations gain measurements of reference channel. Account for possibility
reference channel in 2015 being 20% too high or low w.r.t. 2013
Statistical fluctuation between front and back channels (should statistically average out
in principle)
Systematic differencesd due to different procedures Run 1 and Run 2

Note even with assuming the Run 1 inter and absolute calibration apply for Run 2,
a 2015 inter calibration was still relevant for module 7 and 8 since 13 TeV Run 2
data collected with no magnetic field!
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Revise method of Absolute Calibration

Review

Start deriving a compensation factor Fdet using MC:
In simulation CASTOR is "perfect calibrated" for electrons (no intercalibration issues!)
Simulate total energy per event for collisions in CASTOR with CASTOR tuned to
data-taking conditions. Energy incident: Einc . Measured (first 5 modules): Edet .
Determine the fraction Fdet = Einc/Edet due to noncompensation, bad channels, longi
leakage etc.
→ this number compensates the measured energy for detector effects like
noncompensation, leakage, bad channels.. Conditions dependent!
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Fixing the GeV/fC scale Cabs

GeV/fC scale

For a given dataset determine the incident energy A in GeV (on particle level) on
CASTOR with extrapolation HF measurement (from real data)

Measure the total raw energy in front modules CASTOR per event EfC,raw in real
collisions in fC (energy in fC only after intercalibration with ch. 9.4=1!)

Subsequently perform absolute calibration by A[GeV ] = Fdet ∗ EfC,raw ∗ Cabs
Obtain A[GeV ] from HF extrapolation. Get Fdet from MC simulation. → Cabs is
constrained!
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Fixing and verifying Absolute scale for 2015 intercalib using 2013 data

Concept: for 2013 dataset C2013
abs fixed. → Can constrain C2015

abs by reconstructing
2013 data!

Reconstruct raw Energy E2013
fC,raw for 2013 data with 2013 intercalib and conditions∗

Reconstruct raw energy E2015
fC,raw for 2013 data with 2015 intercalib and 2013∗

conditions, corrected for magnetic field

Impose the reconstructed energy in GeV to be independent from intercalib:
E2013

fC,raw ∗ C2013
abs ≡ E2015

fC,raw ∗ C2015
abs

We obtain C2015
abs =

E2013
fC,raw

E2015
fC,raw

∗ C2013
abs

∗ Might reconstruct with 2013 bad channels merged with 2015 bad channels, if a
bad behaving channel not in intersection bad channel lists
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Pro’s/Con’s

Pro’s

Obtain an absolute calibration Consistent with 2013 calibration

Uncertainty on scale fixed by uncertainty from 2013 procedure

Obtain consistent intercalibration for 2015 as well for mod 7,8! Naturally can later
verify scale with HF (do for example complete procedure including mod 7,8)
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Pro’s/Con’s

Con’s

Need to assumes 2015 PMT response not deteriorated w.r.t. 2013 detector
Do data-analysis with last 2013 runs, PMT’s likely not changed in LS1

One needs to compensate for the B-field (which was off for 13 TeV Run 2 data
taking) Results on doing this using LED data are encouraging!
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